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YHTEENVETO 

Proteinit huolehtivat solun toiminnallisuudesta ja vuorovaikutuksesta muiden 
solujen kanssa. Proteiinit rakentuvat aminohapoista, joiden ominaisuudet ja 
vuorovaikutukset ohjaavat proteiinirakenteen muodostumista ja ylläpitävät 
proteiinin stabiilisuutta sen toiminnan aikana. Yhden aminohapon muutokset voivat 
vaikuttaa stabiilisuutta ylläpitäviin voimiin ja saattavat johtaa eriasteisiin 
muutoksiin proteiinin rakenteessa ja/tai toiminnassa. Äärimmäisessä tapauksessa 
yhden aminohapon muutos voi ilmetä vakavana sairautena. Proteiinin 
kolmiulotteisen rakenteen avulla mutaatioista aiheutuvia rakenteellisia muutoksia 
voidaan tutkia.  

Tämän työn yhtenä tarkoituksena oli tutkia sairauksia aiheuttavia yhden 
aminohapon muutoksia proteiinin sekundäärirakennetasolla. Tätä varten yhdistettiin 
eri mutaatiotietokannoista kerätty aineisto ja kokeellinen proteiinirakenneaineisto. 
Tutkimusaineisto sisälsi 2413 sairautta aiheuttavaa missense-mutaatioita 44 
proteiinissa. 80% mutaatioista esiintyi sekundäärirakenteissa. Aminohappojen 
tiedetään jakautuvan eri tavalla eri sekundäärirakennetyypeissä (α-kierre, β-laskos ja 
käännökset). Tutkimus osoitti, että aminohapot, joiden mutaatiot aiheuttavat 
sairauden, eivät noudata tätä jakaumaa, vaan tietyt aminohapot mutatoituvat muita 
useammin rakennetyypistä riippuen ja korvautuvat yleensä hyvin erityyppisellä 
aminohapolla. Yli puolella näistä aminohapoista havaittiin proteiinin stabiilisuuteen 
vaikuttavia ominaisuuksia. 

Mutaatioiden vaikutusta stabiilisuuteen pystytään ennustamaan 
tietokoneohjelmien avulla. Tässä työssä tehtiin yhdeksän stabiilisuusmuutoksia 
ennustavan ohjelman vertaileva tutkimus, jossa käytettiin testiaineistona 1784 
pistemutaation mittausaineistoa. Näiden ohjelmien vertailu osoitti, että kokeelliseen 
aineistoon verrattuna ennusteohjelmat antavat samansuuntaisia tuloksia. Kuitenkin 
niillä on taipumuksena ennustaa väärin neutraaleja mutaatioita. Ohjelmat 
menestyvät paremmin, kun ne ennustavat stabiilisuutta heikentäviä ja vahvistavia 
mutaatioita erikseen. Vertailun tuloksena ohjelmat pystyttiin asettamaan 
paremmuusjärjestykseen, joskin eri parametreilla mitattuna eri ohjelmat menestyivät 
muita paremmin. 

Kokeellisesti määritettyjä kolmiulotteisia proteiinirakenteita ei ole tällä hetkellä 
saatavilla kuin pienelle osalle tunnettuja proteiineja. Homologiamallituksen avulla 
tuotettuja rakennemalleja on käytetty mm. pistemutaatioiden vaikutusmekanismien 
tunnistamiseen ja ennustamiseen. Tässä työssä tarkoituksena oli arvioida mikäli 
homologiamallit ovat riittävän tarkkoja luotettavaan biologisten ilmiöiden 
tarkasteluun. Työssä käytetyt 14 rakennemallia oli tuotettu homologiamallinnuksen 
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avulla kahden vuosikymmenen aikana samassa tutkimustyhmässä, jossa tämä 
tutkimus suoritettiin ja jokainen malli ja sen pohjalta tehdyt ennusteet oli julkaistu. 
Tutkimuksessa voitiin osoittaa, että vaikka samankaltaisuus käytetyn mallirakenteen 
kanssa oli hyvin alhainenkin (alle 30%), rakennemalleihin pohjautuvat ennusteet 
olivat sopusoinnussa kokeellisesta aineistosta saatujen tulkintojen kanssa. Tämä 
osoittaa, että vertailevaa mallinnusta voidaan tietyin edellytyksin käyttää biologisten 
ennusteiden tekemiseen. 
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ABSTRACT 

Proteins are the machinery of life. They take care of the functionality of living 
cells and interactions between cells. Proteins are formed by amino acids whose 
properties and interactions take part in protein folding and maintain protein stability 
during the function of the protein. Missense mutations that are one amino acid 
substitution can have an effect on energies stabilizing the protein and thus have an 
effect of a different degree on protein structure and/or function. In extreme cases 
one amino acid change can lead to a severe disease phenotype. In order to 
investigate structural effects due to mutations structural information is needed.  

One aim of the study was to investigate disease-causing mutations in protein 
secondary structures. For this purpose mutation data from various mutation 
databases was combined with experimental structural data. The dataset contained 
2413 disease-causing missense mutations in 44 proteins. 80% of the mutations 
appeared in secondary structures.  Amino acids are known to have preferences when 
it comes to different secondary structure types (α-helix, β-sheet, turn and bend). The 
study indicated that disease-causing missense mutations do not follow this 
distribution but that certain amino acids mutate more often depending on the 
secondary structure type, and that they are often substituted with amino acids with 
very different properties. In over half of the mutation cases a direct connection to 
protein stability could be observed.  

The effects of amino acid substitutions on protein stability can be predicted 
computationally with stability prediction programs. The performance and accuracy 
of nine of these programs was assessed using experimental data for 1784 missense 
mutations as a test set. All the tested stability predictors showed a coherent trend in 
their predictions which was in line with experimental data. However, the programs 
tend to fail in predicting neutral mutations. Programs succeed better when 
considering their ability to predict stability increasing or decreasing mutations 
separately.  As a result programs could be ranked albeit different programs 
succeeded better than others when considering different parameters.  

In the absence of experimental 3D data the alterations in stabilizing interactions 
can be studied using protein models. Protein models obtained with homology 
modeling have been widely used to interpret biological phenomena such as 
alterations in intramolecular energies due to mutations. The aim of the study was to 
evaluate if models are accurate enough to be used to predict biological phenomena 
reliably. The 14 homology models used in this study were modeled during the last 
two decades in-house and each of them had been published along with predictions 
based on them. The study showed that the biological explanations made based on 
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models with even very low sequence identity (less than 30%) with the template, 
were in concordance with the interpretations made based on experimental structures 
and other experimental studies. This analysis indicates that models, when made 
carefully, can be used to make biological predictions of mutation consequences.  
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1. INTRODUCTION 

The comprehensive understanding of mutational effects on the structure and 
thermodynamic stability of the protein is crucial to appreciate protein sequence–
structure (Voigt et al. 2000) and structure-function relationships. This understanding 
helps to gain essential new information on genetic disorders, and is utilized in 
several applications, e.g. engineering proteins for therapeutic (Jones et al. 2008) and 
industrial purposes (Lehmann and Wyss 2001; Hirokawa et al. 2008), in the de novo 
design of proteins (Butterfoss and Kuhlman 2006), and in evolutionary studies 
(Bloom et al. 2005; DePristo et al. 2005; Bershtein et al. 2006; Pal et al. 2006).  

The main effect of a missense mutation has been shown to be on protein stability 
(De Cristofaro et al. 2006; Koukouritaki et al. 2007; Ode et al. 2007). This can be 
caused  by geometrical constraints, for example mutation of a small residue to one 
with a bulky side chain in the protein interior, by physicochemical effects, e.g., 
replacement of a hydrophobic residue with a polar residue, reversal of a charge 
within electrostatic interactions, and loss of hydrogen bonds (Shirley et al. 1992). 
Stability is a fundamental property affecting function, activity, and regulation of 
biomolecules.  

Numerous individual case studies have broadened our current view on the effects 
of missense mutations on protein structure. To gain a comprehensive view of the 
occurrence, location and frequencies of disease-causing missense mutations in 
protein secondary structures, a large-scale analysis was conducted. The aim was to 
find if there are tendencies and trends among different mutation types in different 
secondary structure elements and for this purpose the analysis included several tens 
of different genetic diseases with a large number of known mutations.    

Bioinformatics provide vast amount of different tools that are designed to 
produce predictions when for some reason there is a shortage of experimentally 
defined data. Various methods for predicting free energy changes upon missense 
mutations exist. The performance of these stability predictors was evaluated with a 
blind test to see whether there are differences among different methods, and how the 
different programs differ from each other. Protein models produced by the 
homology modeling approach have been used to predict biological phenomena, e.g. 
mutational effects. The aim of this study was to evaluate the utility value and 
reliability of computational protein structure models by assessing biological 
interpretations made based on the models. 
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2. REVIEW OF THE LITERATURE 

2.1 Folded and unfolded protein structures 

The primary structure of a protein is a linear polypeptide chain. After synthesis 
on a ribosome, the polypeptide chain quickly transforms from an unstructured, 
random conformation (the unfolded state) to its unique native conformation (folded) 
state, in which the protein carries out its function. Despite this relatively easy 
concept of protein folding, defining the folding pathway from a protein’s primary 
structure to its tertiary structure has proven to be an immensely challenging task to 
solve (Fitzkee et al. 2005; Kang and Kini 2009). However, much is known of the 
forces that distinguish unfolded and folded forms. 

The thermodynamic stability of a protein is defined by the free-energy difference 
between the unfolded state and the folded state (Pace 1990) as follows: 

foldunfold GGG   

The energetic difference between the folded and unfolded states is due to 
differences in the balance of intramolecular interactions, interactions with the 
surrounding medium, and entropic factors. The folded state is more stable (lower 
ΔG) than the unfolded state. Many studies have confirmed that a high proportion of 
globular proteins are marginally stable under physiological conditions, seeing as 
under biologically relevant solvent conditions, the free energy of folded 
conformations are generally only 5 to 10 kcal/mol higher than for unfolded 
(Privalov and Khechinashvili 1974; Pace 1975; Ruvinov et al. 1997; Vogl et al. 
1997; Giver et al. 1998).  

Experimental and theoretical work has provided mechanistic details of the forces 
that govern the folding and unfolding of proteins. These forces include hydrogen 
bonding interactions (Mirsky and Pauling 1936), electrostatic interactions (Thornton 
1981; Cho and Raleigh 2006), van der Waals interactions (Chen and Stites 2001), 
and hydrophobic interactions (Dill 1990). The major destabilizing force is 
conformational entropy (Pace et al. 1996). These various interactions that arises 
from the functional side chains of amino acids, contribute with various strengths to 
the protein stability and protein folding process (Dill 1990; Yang et al. 2007; Dill et 
al. 2008). The final structure of the protein monomer or complex is a result of a 
subtle balance between stability posing and opposing forces and thus a single 
mutation may shift this balance and have a significant effect to the stability of the 
whole protein (Matthews 1987; Alber 1989).  

Intramolecular interactions define the overall structure and stability of a protein, 
as well as regions that can undergo conformational rearrangements. Also functional 
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properties, such as catalysis, allosteric regulation and ligand binding, arise from the 
same interactions that define stability. Although much is known about individual 
forces, understanding the precise interplay of intermolecular interactions requires 
still more elucidation  (Mounce et al. 2009). 

2.2 Local and nonlocal interactions in protein 
secondary, tertiary and quaternary structures 

Interactions in proteins can be divided into two classes: local and nonlocal, 
separated by distance of interacting amino acids along the sequence (Dill 1990).  
Local interactions take part in defining secondary structure while nonlocal 
interactions, i.e. interactions among residues situated distant in sequence but close in 
space, are involved in defining the tertiary and quaternary structures. Both local and 
nonlocal interactions can be either sequence independent or dependent on the 
chemical nature of the residues involved (Munoz and Serrano 1996).  

2.2.1 Secondary structure propensities 

Interactions of amino acids between each other along the polypeptide chain and 
with the surrounding solvent determine the stable three dimensional (3D) structure 
(Selvaraj and Gromiha 2003). Secondary structural elements, α-helices, β-strands, 
turns and bends are common regular conformations of polypeptides, and they form 
particularly energetically favorable structures.  

The amino acid distributions in different secondary structures have long been 
calculated based on experimental structures (Chou and Fasman 1974; Levitt 1978) 
and many secondary structure prediction methods are based on these results. 
However an update has recently been made using a much larger structural dataset 
(Malkov et al. 2008). Several experimental studies have emphasized the role of 
secondary structure propensities in protein stability. Introducing residues that have 
favorable secondary structure propensities at certain positions in a protein can have 
a  significant stabilizing effect (Villegas et al. 1996; Strop et al. 2000; Taddei et al. 
2000). This increase, or in the opposite case decrease, has been observed to be 
approximately 1 kcal/mol between the original and mutant residue (excluding 
proline) for a given conformation. The effects of a residue itself can however, in 
some cases, be masked with effects of the context (Minor and Kim 1996).  

The most common secondary structure in proteins is the right-handed α-helix 
with 3.6 residues per turn and a translation of 1.5 Å per residue (Pauling et al. 
1951). The α-helix formation propensity has been shown to be dependent on various 
factors (Feyereisen et al. 1977; Yang and Honig 1995; Kilosanidze et al. 2004). The 
most prominent factor is the amino acids taking part in helix formation, and the 
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consequent interactions that are sterically permitted. As early as the 1960s, several 
groups presented methodologies based on the characteristics of the various residues 
to predict potential secondary structures (Schiffer and Edmundson 1967; Kotelchuck 
and Scheraga 1969). Although they did not consistently predict the specific 
potentials of all 20 amino acids in forming secondary structures, the most favorable 
and least favorable helix formers were mostly in agreement. For example, aliphatic 
residues with branched Cβ side chains (valine, leucine and isoleucine) were shown 
to be unfavorable due to the large volume of the functional group resulting in steric 
clashes. In contrast, alanine is known to possess a high helix-forming propensity, as 
was recently verified (Malkov et al. 2008). In addition Malkov et al. found leucine 
and glutamic acid to be strong helix formers. On the other hand, conformational 
residues, glycine and proline both have helix destabilizing effect.  Glycine lacks the 
side chain functional group that creates inherent flexibility of the peptide bond 
(Chakrabartty et al. 1991; Malkov et al. 2008) while proline lacks an amide proton 
and causes steric clashes between the pyrrolidine ring and the side chain of the 
neighbouring residues (Altmann et al. 1990; Malkov et al. 2008).  

The other main secondary structure type in protein structures is the β-strand. The 
distinctive feature of the β-strand is its ability to form either parallel or anti-parallel 
sheets bringing residues that are distant in sequence into close proximity with one 
another. Residues with Cβ-branched side chains or aromatic side chains were 
observed to be most favorable in the formation of β-sheets (Chou and Fasman 1974; 
Smith and Regan 1997; Malkov et al. 2008). As with α-helices, flexible or rigid 
residues (glycine and proline) are similarly disfavored in the formation of β-sheet 
structures (Malkov et al. 2008).  

Turns and bends are additional secondary structural elements that connect the 
main elements. It has been observed in statistical analyses that glycine, proline and 
certain residues with polar side chains, such as aspartic acid, asparagine and serine, 
are favorable for forming the turns  (Chou and Fasman 1978; Smith and Regan 
1997; Lee et al. 2008) and bends (Malkov et al. 2008).  

2.2.2 Disulphide bonds 

Disulphide bonds are covalent bonds formed by the oxidation of two cysteine 
residues. According to a recent study of Thangudu et al. the vast majority of 
disulphide bonds are formed between cysteines in near proximity in the sequence 
(Thangudu et al. 2008) bringing together local regions of the protein. Nonlocal 
disulphide bonds are less frequent (Levitt and Chothia 1976). It has also been shown 
that the degree of the stability increase of the native structure due to disulphide 
bonds is dependent on the number of residues between the linked cysteines: having 
more residues between the disulfide results in more stable native structure (Pace et 
al. 1988). Location of disulphide bonds affects protein stability in different ways. 
Whren introduced in or near the folding nucleus disulphide bonds can accelerate 
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protein folding, while disulphide bonds introduced elsewhere can cause deceleration 
of protein folding even by three orders of magnitude (Abkevich and Shakhnovich 
2000). Site-directed mutagenesis experiments have shown that the contribution of a 
disulphide bond to protein stability is in the range of 1.5–3.5 kcal/mol (Gromiha et 
al. 2002).  

2.2.3 Hydrophobic and van der Waals packing interactions 

Burial of hydrophobic residues into the protein core has been claimed to be the 
driving force of protein folding. Hydrophobic residues dominate the protein core 
and they are generally buried or tightly packed (Ptitsyn 1998; Ptitsyn and Ting 
1999; Ting and Jernigan 2002). Both hydrophobic and van der Waals interactions 
take part in tertiary structure formation and are thus considered nonlocal. A tightly 
packed hydrophobic core, maximizing favorable van der Waals contacts and 
minimizing cavities, is crucial for protein tertiary structure and stability of the 
protein (Levitt et al. 1997; Richards 1997; Lee et al. 2000; Leiros et al. 2000; Wang 
et al. 2000; Northey et al. 2002). Kuntz foud that although the protein interior is 
well packed, the packing is not uniform (Kuntz 1972). Kuntz and coworkers later 
observed a rough correlation between the packing density and the polarity of a 
region (Kuntz and Crippen 1979) and additionally the tightest packing is in the 
hydrogen-bonded backbone regions of the protein (Kurochkina and Privalov 1998). 
It has also been shown that small cavities, voids and other packing irregularities are 
in fact common in the protein core (Hubbard et al. 1994; Pontius et al. 1996; Liang 
and Dill 2001; Tsai et al. 2002).  

Van der Waals forces are very weak (0.01 - 0.2 kcal/mol), but their stabilizing 
effect is based on the large number of these dispersion forces. It has been shown that  
van der Waals forces depend on how tightly a protein is packed (Ponder and Case 
2003), i.e. among fixed or induced dipoles these forces are much greater in the 
native state than in the unfolded state. Tight packing in proteins implies the 
importance of van der Waals interactions to protein stability, and these dispersion 
forces are important to both polar (Pace 2001; Pace et al. 2004) and nonpolar 
(Eriksson et al. 1992; Chen and Stites 2001) group burial.  

2.2.4 Local and nonlocal hydrogen bonds 

The interacting partners in a hydrogen bond can be two polar side chains, polar 
side chain and peptide backbone or a hydrogen bond can be formed between 
backbone atoms (Baker and Hubbard 1984) and unlike other noncovalent 
interactions in proteins they are directional. A hydrogen bond occurs when two 
electronegative atoms (mainly N and O) share a hydrogen atom (Baker and Hubbard 
1984). However, hydrogen bonding may also involve less electronegative atoms, 
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e.g. sulphur (Platts et al. 1996; Zhou et al. 2009). Hydrogen-bond strength, which 
depends on the electronegativity and orientation of the bonding atoms, is in the 
range of 1-10 kcal/mol (Sabin 1971). In an aqueous environment the strength of the 
hydrogen bond is only some 1–3 kcal/mol (Colman et al. 1987), whereas the 
strength of the same bond in the isolated molecule is typically some 5 kcal/mol 
(Colman et al. 1987; Rozas 2007).  

Hydrogen bonds can be divided into local and nonlocal depending on the 
distance of interacting residues. The majority of main chain – main chain (Stickle et 
al. 1992) and main chain – side chain interactions (Eswar and Ramakrishnan 2000) 
are local. Side chain – side chain hydrogen bonds take part in tertiary structure 
formation and are thus classified as nonlocal. Local bonds have been said to provide 
more stability to a protein than nonlocal hydrogen bonds (Shi et al. 2002). 

Main secondary structural elements, α-helices and β-sheets, are formed by local 
hydrogen bonding among main chain polar residues (Kabsch and Sander 1983; 
Wilmot and Thornton 1988). Approximately two-thirds of intramolecular hydrogen 
bonds are within secondary structures (Stickle et al. 1992). In α-helix the carbonyl 
group of the i:th residue forms a hydrogen bond with the amide proton of the i + 4 
residue of the polypeptide in a periodic manner. On the other hand in β-strands the 
backbone hydrogen bonding pattern is dependent on the orientation of the β-strands 
(Smith and Regan 1997). The vast majority of main chain – side chain hydrogen 
bonds are buried indicating that this type of interaction is important in maintaining 
the stability of the protein interior (Eswar and Ramakrishnan 2000).  

2.2.5 Electrostatic interactions and salt bridges 

Ionic bonds involve interactions between negatively and positively-charged 
amino acid side chains: between the positively charged basic side chains of lysine, 
histidine and arginine, and the negatively charged carboxyl groups of glutamic acid 
or aspartic acid (Mitchell et al. 1992). The ionic bond formation depends on the 
protonation state of the partners and hence on pH. Ionic bonds are considered local 
interactions, because they occur over a distance of 4 Å or less. Sometimes ionic 
bonds are also termed salt bridges, but this usually refers only to ionic bond 
interactions that are also hydrogen bonded.  

Charge-charge repulsion or attraction can be significant even if the interacting 
side chains of the residues are separated by larger than 4 Å distances. Long-range 
electrostatic effects are important not only for stabilizing the tertiary (Heremans and 
Heremans 1989) and quaternary structure but also for protein functionality (e.g. 
catalysis and ligand binding) (Jelesarov and Karshikoff 2009). In figure 1 the 
different interactions described above are illustrated. 
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Figure 1. Examples of intramolecular interactions. The different interactions are colour 

coded as follows: Disulphide bond is in red, ionic bond is in blue, hydrophobic 

interaction is in green and different kinds of hydrogen bonds are in yellow. 

2.3 Stability and activity 

Considering the overall protein stability, active site organization in enzymes is 
inherently unfavorable for several reasons. One of the most striking reasons is that 
functional residues are generally polar or charged but are located in hydrophobic 
clefts (Dessailly et al. 2007). In addition, the residues involved in catalytic site often 
have unfavorable backbone angles (Herzberg and Moult 1991; Ollis et al. 1992). For 
this reason, the substitution of a key catalytic side chain can dramatically increase 
stability, but cause loss of activity (Zhi et al. 1991; Meiering et al. 1992; Schreiber 
et al. 1994; Kidokoro et al. 1995; Shoichet et al. 1995; Garcia et al. 2000; Beadle 
and Shoichet 2002; Nagatani et al. 2007; Counago et al. 2008). In contrast a 
mutation that improves or alters function often decreases stability (Wang et al. 
2002). However, several studies have demonstrated that stability and activity are not 
necessarily incompatible. It has been observed that high temperatures can act as a 
selection pressure and produce highly stable and active enzymes (Quirk et al. 1998; 
Schindler et al. 1998; Di Nardo et al. 2003). There are also instances where the 
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stability of an enzyme can be increased without contributing to function (Serrano et 
al. 1993; Giver et al. 1998; Van den Burg et al. 1998; Arnold et al. 1999; Lehmann 
and Wyss 2001; Takahashi et al. 2007).  

Directed evolution has been used to find mutations that increase stablility without 
sacrificing enzymatic activity. In these experiments it was observed that naturally 
occurring proteins are not maximally stable (Serrano et al. 1993; Arnold 1998; 
Giver et al. 1998; Arnold et al. 2001). Maximal stability among proteins is rare 
(Taverna and Goldstein 2002) and it has been observed that proteins will tend to be 
no more stable than is required by their environment (Tokuriki et al. 2008).  

2.4 Stability and flexibility 

In native proteins two opposite properties are known to coexist. While a protein 
is constantly trying to maintain the stability of its structure, the native fold performs 
large amplitude conformational changes that allow proper function (Vihinen 1987; 
Henzler-Wildman et al. 2007). By comparing homologous proteins from 
thermophilic and mesophilic oganisms, it was observed that the balance between 
stability and flexibility is maintained by adaptive mutations, and stabilizing solutes 
regardless of the temperature at which the protein functions (Vihinen 1987; Tang 
and Dill 1998; Fields 2001).  
Hydrogen isotope exchange (Scholtz and Robertson 1995) is one of the most 
utilized methods employed to study the inter-relationship of protein stability and 
flexibility. While increased stability resulting in loss of flexibility (Somero 1995; 
Wolf-Watz et al. 2004) has been repeatedly observed, comprehensive investigation 
of these opposing properties has revealed a much more complicated system. As a 
consequence of coupling between both flexible and rigid regions of a given protein 
and correlation of various protein motions and solvent fluctuations, both increases 
and decreases in stability can occur (Ferreon et al. 2003; LeMaster et al. 2005).  

Recently, proteins with both high thermal stability and flexibility have been 
found (Durney et al. 2004) and enhanced thermal stability without increased 
conformational rigidity have been able to achieve (LeMaster et al. 2005). 

Protein motions and dynamic processes are commonly investigated with nuclear 
magnetic resonance (NMR) spectroscopy, multi-dimensional NMR (Mittermaier 
and Kay 2006) or molecular dynamics (MD) simulations (Wu et al. 2008). 

2.5 Genetic variation 

Point mutations, i.e. the substitution of a single nucleotide for another, are the 
most common type of genetic variations (Botstein et al. 1980; Suh and Vijg 2005) 
resulting in about 90% of sequence differences (Collins et al. 1998) and occurring in 
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average at frequency of one per 1000 bases (Taillon-Miller et al. 1998). Large-scale 
identification of single nucleotide polymorphisms, SNPs, in the human population 
has resulted in an exponential expansion in the number of known SNPs. The 
International HapMap Project has released 3.1 million SNPs genotyped in 270 
individuals (Frazer et al. 2007). Other types of variation result from the insertion, 
deletion or duplications of a single nucleotide or section of DNA ranging from a few 
kilobases to several megabases in size (Iafrate et al. 2004). Genetic variation can be 
seen at DNA, RNA or protein levels and these variations can include 
missense/nonsense mutations, splicing variation, mutations in gene regulatory 
regions, small deletions and insertions, small indels, repeat variations, gross 
insertions/duplications, complex rearrangements and rare gross deletions. 
Chromosomal aberrations include rearrangements in genomic DNA or changes in 
copy number such as deletions, duplications, and amplifications (Kallioniemi et al. 
1996; Liu et al. 2009).  

2.5.1 Missense mutations and SNPs 

A point mutation can occur within coding or non-coding regions of DNA. A 
point mutation that does not affect the gene product is called a silent mutation 
(Komar 2007). A silent mutation can, however, affect gene expression and 
regulation by interrupting a regulatory region and thus influence transcription factor 
binding. The SNPs that occur within the coding part of exons could essentially lead 
to the change of the amino acid sequence of the corresponding protein. However, all 
amino acids, except methionine and tryptophan are coded by more than one codon. 
If the substitution of a nucleotide changes the codon without changing the 
corresponding amino acid, it is termed synonymous (Cargill et al. 1999). However, 
such a synonymous mutation can still affect protein expression by interfering with 
normal splicing e.g. causing exon skipping resulting in the formation of an 
incomplete protein (Pagani et al. 2005). It has also been shown that synonymous 
mutations affect mRNA folding and hence the final quantity of translated protein 
(Kudla et al. 2009). A nonsense mutation is a point mutation resulting in a 
premature stop codon, or a nonsense codon which leads to a truncated, usually 
nonfunctional peptide chain (Linde and Kerem 2008). 

Missense mutations, also called nonsynonymous SNPs (nsSNP) are types of 
genetic changes where one base in the DNA is changed causing a substitution of one 
amino acid with a different amino acid. If the substituting amino acid has very 
similar chemical properties as the original residue, the mutation does not necessarily 
affect protein structure and function. This kind of mutation is termed as a neutral or 
quiet mutation. The most dramatic affect, in terms of protein structure and function, 
appears when as a result of missense mutation the original residue is replaced with a 
mutant residue with completely different properties. An nsSNP can be either 
disease-causing or it can be responsible for the natural variation among the 
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individuals within a particular population. In terms of evolution, mutations can be 
advantageous on particular environment but neutral or harmful on others (Weinreich 
et al. 2005). 

2.5.2 Genetic alterations and disease 

Many mutations have been associated with monogenic and complex diseases. 
The Human Gene Mutation Database (HGMD) (Stenson et al. 2009) is a collection 
of human mutations in inherited monogenic diseases including missense and 
nonsense mutations, insertions, deletions and repeat variation. Currently HGMD 
(Professional release 2009.3) harbours more than 93 000 mutations of which 56% 
are missense mutations. The effects of missense mutations on protein structure and 
function vary hugely. An amino acid substitution can have an affect on protein 
function if the mutated residue is involved in functionality, resulting in either loss of 
function or in some cases gain of function. Effects on protein structure can result in 
misfolding, destabilization, or aggregation of the protein. Furthermore, missense 
mutations may have an affect on protein pre- and posttranslational events. It has 
been suggested that up to 80% of disease-causing mutations destabilize the protein 
through steric or electrostatic effects (Wang and Moult 2001; Yue et al. 2005). Yue 
et al. found that a disease-causing mutant typically destabilizes a protein by 2–3 
kcal/mol (Yue et al. 2005). Besides HGMD there are numerous systematic 
repositories that collect mutation data for monogenic diseases. Phencode (Giardine 
et al. 2007) connects currently 31 locus-specific databases harbouring over 26 000 
variants. A major effort in mutation research is to understand how and when SNPs 
can cause disease (Sunyaev et al. 2000; Kann 2007; Torkamani and Schork 2007). 
To address this issue there are currently numerous computational programs that 
predict effects of missense mutations to protein structure and/or function. PON-P 
(Pathogenic or Not) is a service that compiles and runs simultaneously large variety 
of prediction programs related to stability, aggregation, tolerance, etc. and returns 
summary of the results (Thusberg and Vihinen 2009).  

2.5.3 In vitro mutagenesis 

In site-directed mutagenesis a mutation is generated at a defined position in a 
protein. Alanine-scanning mutagenesis is a specific subtype of site-directed 
mutagenesis. In this method systematic alanine substitutions are made in order to 
remove all side chain atoms past the β-carbon. Thus, the role of the side chain 
functional groups of the original amino acid at a specific position can be 
investigated. Alanine lacks unusual backbone dihedral angle preferences; glycine 
would also abolish the side chain, but could introduce more conformational 
flexibility into the protein backbone. In order to study the contributions of individual 
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amino acid side chains to the properties of proteins, mutagenesis of specific residues 
has proven very useful approach (Morrison and Weiss 2001).  

Experimentally, ΔΔG values can be obtained from denaturing experiments, e.g. 
differential scanning calorimetry, guanidinium chloride-induced or urea-induced 
denaturation (Privalov 1979; Becktel and Schellman 1987; Jackson and Fersht 1991; 
Makhatadze and Privalov 1992; Jackson et al. 1993) where a set of stable mutants 
unfolds due to temperature increase or addition of denaturing agents like 
guanidinium chloride or urea. For example in the case of temperature-induced 
denaturation thermodynamic data for the melting temperature, heat capacity change 
and denaturation enthalpy is obtained from which the denaturation free energy (ΔG) 
can be calculated. This, combined with corresponding data for the wild type protein, 
provides information regarding the contribution of each amino acid substitution to 
the overall protein stability. 

Experimental data achieved from site directed mutagenesis experiments have 
been stored in the ProTherm database (Gromiha et al. 1999; Gromiha et al. 2002; 
Kumar et al. 2006). 

Methods for understanding and manipulating protein stability are utilized both in 
basic research and in industrial applications (Pace 1990; Lazar et al. 2003). In vitro 
mutagenesis has been used successfully to increase protein stability by optimizing 
the various interactions that contribute to protein stability (Villegas et al. 1996; 
Akasako et al. 1997; Grimsley et al. 1999; Peterson et al. 1999; Petsko 2001; 
Trevino et al. 2005; Sawano et al. 2008). These methods include rational or 
structure-based design (Eijsink et al. 2004), directed evolution (Vieille and Zeikus 
2001) and the computational consensus method (Lehmann and Wyss 2001). 

2.5.4 Stability affecting mutations 

Destabilizing and stabilizing mutations affect protein intramolecular interactions. 
Considering missense mutations that either stabilize or destabilize protein structure, 
the underlying reasons are not necessarily easy to find and the reasons vary from 
one mutation location to another, making stability affecting mutations very context 
dependent (Main et al. 1998). 

A substitution into a hydrophilic residue in the hydrophobic core has a 
destabilizing effect (Shortle et al. 1990; Matthews 1993; Liu et al. 2000). However 
the underlying mechanism varies. The change in stability upon mutation has been 
related to local packing density (Shortle et al. 1990), structural perturbations in 
neighboring atoms (Buckle et al. 1996), and to the amount of methyl and methylene 
groups within 6 Å from the mutated residues (Otzen et al. 1995). It has been 
observed that the removal of one methyl group from the interior of a protein will 
decrease the stability by approximately 5 kcal/mol (Loladze et al. 2002). In addition 
the degree of destabilization is dependent on the relative polarity of the methyl 
group. For example, burial of asparagine in the non-polar interior will be more 
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destabilizing than burial of threonine. The decrease in stability is due to a large 
enthalpy of dehydration of polar groups upon burial. To emphasize the complexity 
of the intramolecular interactions, the destabilizing effect can be compensated if the 
buried polar groups form hydrogen bonding. The destabilizing effect of dehydration 
is compensated by the enthalpy of the hydrogen bonding resulting the overall effect 
to be energetically neutral or even slightly stabilizing (Loladze et al. 2002). 

Volume differences between the original and mutant amino acids can cause 
destabilization. Small to large mutations have been observed to cause strain in the 
structure (Liu et al. 2000). If the mutant residue is smaller than the original residue a 
cavity is formed. It has been shown that cavity-creating substitutions decrease the 
stability of the protein ranging from 2.7 to 5.0 kcal/mol (Eriksson et al. 1992). 
Matthews used alanine-scanning mutagenesis to substitute leucine with alanine in 
T4 lysozyme and found a relationship between the size of the cavity formed and the 
degree of destabilization; the larger the cavity formed the greater the loss of stability 
(Matthews 1995). Implementing mutations to fill existing cavities in a protein core 
has been shown to enhance protein stability (Ohmura et al. 2001) although this can 
easily cause unfavorable van der Waals contacts.  

Stability of the protein can be increased by introducing additional chemical 
bonds (Sanchez-Ruiz and Makhatadze 2001; Dominy et al. 2002; Dominy et al. 
2004), by increasing the strength of existing bonds (Fernandez et al. 2008) or by 
replacing existing chemical bonds with stability increasing alternatives (Kather et al. 
2008). These strategies can be applied to, e.g., optimize hydrophobic core 
interactions (Chen et al. 2000; Chen and Stites 2004; Korkegian et al. 2005). An 
increase in hydrogen bond strength was observed when a mutant hydrophobic 
residue at the surface of a protein was seen to stabilize either helix- or sheet-rich 
proteins by up to 1.2 kcal/mol  (Gao et al. 2009). Most disulphide bonds serve to 
stabilize protein structure (Thornton 1981). A recent study showed however that 
even these stabilizing covalent bonds can be replaced by noncovalent bonds that 
produce an even more stable protein. This effect on stability was explained by 
improved side-chain packing (Kather et al. 2008). Mutations that reverse the charge 
on a side chain on the surface of a protein have been used to optimize electrostatic 
interactions and thus increase stability (Grimsley et al. 1999; Gribenko et al. 2009). 

2.5.4.1 Glycine and proline substitutions 

Proline and glycine are grouped as conformational residues as they possess 
unique structural characteristics different from other amino acids. Glycine lacks a 
βC and can therefore have many backbone dihedral angles. Due to this  property 
glycines are found in reverse turns where positive dihedral angles are required (Rose 
et al. 1985). Substituting glycines in such turns with any other residue would be 
expected to destabilize the protein unless the protein could tolerate an alternative 
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type of turn (Pakula and Sauer 1989). Proteins can be stabilized by adding glycine 
residues at certain positions in tight reverse turns (Trevino et al. 2007).  

Proline has two distinct properties that distinguish it from other amino acids: it is 
missing a peptide-NH group and the cyclic structure of proline's side chain locks its 
φ backbone dihedral angle at a certain angle giving proline an exceptional 
conformational rigidity. In some positions, proline may be introduced with little or 
no detrimental effect to protein function, while at positions where significantly 
different backbone torsional angles are required it is destabilizing (Pakula and Sauer 
1989; MacArthur and Thornton 1991). Mutations to prolines are especially 
destabilizing when located internally in α-helices or β-sheets. This is due to steric 
clashes between the pyrrolidine ring and the side chain of the neighbouring residues 
(Schimmel and Flory 1968), hindering secondary structure formation. In addition 
proline is missing a peptide-NH group and is thus incapable of acting as a donor and 
forming hydrogen bonds. Substituting a residue involved in a main chain hydrogen 
bond with proline could destabilize the protein. The rigid structure of proline can 
also be used to stabilize the protein as proline has the ability to decrease the 
backbone conformational entropy of the unfolded form of the protein. This 
stabilizing effect was achieved by replacing different residues by proline (Matthews 
et al. 1987; Watanabe et al. 1994). 

2.6 Predicting stability upon point mutation 

Two distinct computational approaches to predict consequences of mutations on 
protein stability exist: approaches based on energy functions and approaches that 
rely on machine learning.  

The methods that use energy functions can be subdivided between physical- and 
knowledge-based approaches. The physical-based potential approaches directly 
calculates ΔΔG using classical force fields (Bash et al. 1987; Gao et al. 1989; 
Prevost et al. 1991; Tidor and Karplus 1991; Pitera and Kollman 2000; Pokala and 
Handel 2005; Yin et al. 2007; Benedix et al. 2009). The EGAD (Benedix et al. 
2009) method treats the backbone as fixed and therefore does not allow e.g. glycines 
or prolines to mutate or as mutants. In contrast Eris (Yin et al. 2007) takes into 
account backbone flexibility. These methods work best with few mutation cases. 
Despite recent developments the computational cost of direct ΔΔG estimation is too 
high and methods cannot therefore be applied to run simultaneously large datasets. 
To overcome these problems terms that simplify energy functions to approximate 
stability changes have been developed (Lee 1994).  
Knowledge-based potential approaches utilize simplified energy functions to 
approximate stability changes. They incorporate Boltzmann statistics to analyze 
propensities of the interactions between atoms from known protein structures 
(Tanaka and Scheraga 1976). As the amount of known structures in the Proten Data 
Bank (PDB) (Berman et al. 2000) has increased during the last decades,  different 
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approaches to derive knowledge-based energy functions have emerged. All the 
different approaches have tried to select the energy function that could best describe 
the ΔΔG changes upon mutation. The repertoire of knowledge-based potentials as 
well as the datasets and chosen criteria to extract the information vary between the 
stability prediction methods. The first publically available program that was 
designed to predict the stability effect upon mutation regardless of protein 
environment was the first version of PopMusic (Gilis and Rooman 2000). Their 
method used backbone dihedral potentials derived from the PDB. Subsequently 
geometric descriptors such as angles or distance between atoms have been redefined 
(Zhou and Zhou 2002; Parthiban et al. 2006). Emplyed cutoffs for nonlocal 
interactions vary between different methods. While Gilis and Rooman defined 
nonlocal interaction to be in a range separated by at least 15 residues, Zhou and 
Zhou used a cutoff of 14.5Å and Deutsch and Krishnamoorthy 12 Å in their 
programs Dmutant (Zhou and Zhou 2002) and MultiMutate (Deutsch and 
Krishnamoorthy 2007). The size of the dataset used to derive the potentials differs 
in different methods. For example Gilis and Rooman used 141 structures for 
extracting the torsion angle potentials and distances between atoms (Gilis and 
Rooman 2000), whereas Parthiban et al. used a dataset of 4024 non-redundant 
protein structures for deriving torsion angle potentials utilized in CUPSAT 
(Parthiban et al. 2006).  

Most of the energy functions have been derived from pair interactions. However 
two of the stability predictors, AUTO-MUTE (Masso and Vaisman 2008) and 
MultiMutate, are based on four-body interactions. The interactions of four 
participating amino acids with each amino acid located at the centroid in turn are 
taken into account. The length of the edge of the tetrahedra has a cutoff of 10 Å. In 
this way the packing of the protein can be measured.  

When the energy functions of knowledge-based potential are formed by 
extracting the data from databases the preceding step is the evaluation that aims to 
optimize the usage of that information. Guerois et al. used experimental data of the 
stability affecting mutants from ProTherm database (Kumar et al. 2006) to optimize 
their method FoldX (Guerois et al. 2002) to reproduce experimental results. Data 
from ProTherm was also used in optimizing CUPSAT and AUTO-MUTE. Dmutant 
was optimized with data from the PROSTAR website and Popmusic with literature 
data. MultiMutate makes an exception because it has not been optimized. 

Machine learning approaches include support vector machines (SVM), neural 
networks and decision trees. SVM predicts stability changes upon mutations using a 
trained model. The model is trained with input vectors. Cheng et al. and Capriotti et 
al. used datasets collected from ProTherm database to train their programs MUpro 
(Cheng et al. 2006) and different versions of I-Mutant (Capriotti et al. 2005; 
Capriotti et al. 2008). In addition to mutation data Capriotti et al. used temperature, 
pH, neighbouring residues and relative solvent accessible surface area as input 
vectors (Capriotti et al. 2005).  
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Unlike other programs, the machine learning methods discussed here can use 
primary sequence information as input. For example I-Mutant uses either a protein 
structure or a sequence as inputs. MUpro uses either sequence information or a 
combination of sequence and tertiary structure. The decision tree based method 
iPTREE-STAB (Huang et al. 2007) uses only secuence information. SCide 
(Dosztanyi et al. 2003) and SCpred (Dosztanyi et al. 1997) predict stability centers 
from sequence data and they are both based on neural networks. 

The common feature of some of the knowledge-based and all the machine 
learning methods is that they are use a use a training set of mutations to train the 
best combination of the diverse set of sequence and structure interaction terms. Thus 
the accuracy of these methods is dependent on the training procedure and on the 
training set of mutations used (Deutsch and Krishnamoorthy 2007). A summary of 
currently available predictors is presented in table 1. 

2.7 Predicting protein structure 

There are two experimental methods used for protein structure determination: X-
ray crystallography (recently reviewed by Joachimiak 2009) and nuclear magnetic 
resonance (NMR) spectroscopy. These methods require significant experimental 
effort as they are laborious, difficult (e.g. membrane protein crystallization) and 
time-consuming. Despite large community-wide structural genomics initiatives, e.g. 
the Protein Structure Initiative (PSI), a gap still remains between structural data and 
sequence data. Large-scale genome sequencing projects are producing new protein 
sequences more rapidly than structures for them can be solved. Currently 
UniProtKB 15.10 / TrEMBL contain more than 9.6 million non-redundant protein 
sequence entries. For 0.6% of these an experimental structure exists, as the Protein 
Data Bank (PDB) harbors approximately 62,000 protein structures. Because 
structural information is needed in many disciplines in molecular biology, e.g. in 
studying mutational effects in proteins, computational methods can essentially offer 
an unlimited potential to predict protein structures.  

 Computational approaches to protein structure prediction can be classified into 
three main categories: homology modeling, protein threading or fold recognition, 
and ab initio or de novo approaches.  

2.7.1 Template-based modeling 

Homology modeling and threading are both template-based approaches quite similar 
in terms of prediction techniques. However they differ in the way they utilize known 
structures as templates. Comparative or homology modeling uses one or more 
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previously solved structures as templates that are homologous with the query protein 
(target) (Sali and Blundell 1993). Protein threading requires only fold-level 
homology with the protein of unknown structure (Jones and Thornton 1993). The 
foundation of comparative approach is based on the fact that a small change in the 
protein sequence usually results a small change in its 3D structure (Chothia and 
Lesk 1986). In addition, the proteins from the same protein family share more 
conserved 3D structure space than primary sequence space (Lesk and Chothia 
1980).  

Zhang and Skolnick (Zhang and Skolnick 2005) studied the structural universe of 
the current PDB library of known motifs and concluded that templates can be found 
for the majority of targets with an average rmsd of 2.25 Å with a sequence identity 
of 15%. With a sequence identity of 30%, which is commonly used as the threshold 
for performing a homology modeling task (Chung and Subbiah 1996), only about 
65% of the proteins could be assigned by the current threading techniques (Zhang 
and Skolnick 2005). One aim of the structural genomics intiatives is to complete the 
structural spectrum as there is known to exist only a limited set of structural motifs 
(Pearl et al. 2005; Andreeva et al. 2008). The quality of the alignment of selected 
template(s) is critical, because the assembly of the model is based on the alignment. 
Several alignment methods exist (Hasegawa and Holm 2009).  

Several strategies exist for constructing the model (Sanchez and Sali 1997) based 
on the number of templates used and thus how the coordinate information is to be 
utilized. After constructing the backbone the regions that are likely to have different 
conformations than the templates are constructed, namely side chains and loop 
regions. For side chains, the standard procedure has been to sample rotamer libraries 
for each residue (Xiang and Honig 2001; Dunbrack 2002). For adding the loop 
regions two approaches have been applied: database search and ab initio techniques. 
The latter has been suggested as yielding more accurate predictions than database 
search methods (Xiang et al. 2002; Soto et al. 2008). The last step is the refinement 
of the structure. All the different steps from choosing the template to loop modeling 
are equally important to produce a reliable model.  

Homology modeling procedures have previously been performed by hand to a 
great extent, but subsequently many steps have been automated and currently the 
whole process can be performed by a single run. The best public CASP-certified 
protein structure prediction servers at the moment are SwissModel (Kiefer et al. 
2009) and MODELLER. However these theoretically calculated models are prone to 
contain significant errors. The fraction of sequences in a genome for which 
comparative models can be obtained automatically varies from approximately 20%–
75% (Pieper et al. 2009). 

Regardless of the known challenges of comparative protein modeling concerning 
alignment and side chain and loop region modeling, the protein 3D models reach 
accuracy comparable to a low-resolution experimentally determined structure 
(Marti-Renom et al. 2002). In addition it has also been shown that the homology 
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modeling is the most accurate method among the computational methods, yielding 
reliable models (Furnham et al. 2008). 

2.7.2 Ab initio modeling 

Ab initio prediction methods seek to build protein structures based only on 
sequence information. The Ab initio approach, at its purest, is based on the classical 
force fields originating from physical principles governing the interactions of amino 
acids within a polypeptide chain and the surrounding solvent. In addition the size of 
the conformational space to be searched is vast, as already stated by Cyrus Levinthal 
(Levinthal 1968). It has been stated that present atomic potentials have the lowest 
energy near the native state and that the bottleneck in ab initio modeling is the 
insufficient conformation search (Bradley et al. 2005). By applying classical force 
fields it has been possible to produce high-resolution models for tiny polypeptides, 
e.g. the structure of a 36 residue-long polypeptide was solved to 1.7 Å, but 
demanded 1000 CPU years (Zagrovic et al. 2002).  

To reduce computing time and effort, several stochastic approaches have been 
applied. One approach was to assemble new 3D structures using small fragments cut 
from experimentally solved proteins (Bowie and Eisenberg 1994; Simons et al. 
1997). This approach is developed further by first assembling low-resolution 
knowledge-based models and secondly refining the details of these structures with 
an all-atom physical-based potential (Bradley et al. 2005). A knowledge-based 
approach has also been used e.g. by Skolnick and coworkers to reassemble protein 
structures using threading alignments (Zhang and Skolnick 2004). The refinement is 
done by iterative Monte Carlo simulations (Wu et al. 2007). A Monte Carlo search 
of the conformational space is much more quicker if the chain is superposed on a 
discrete lattice, e.g. Skolnick and coworkers used a cubic lattice (Zhang and 
Skolnick 2004). Cubic or simple square lattices (Sali et al. 1994; Sali et al. 1994; 
Dill et al. 1995) are widely used lattice systems. The simplest of lattice models, the 
2D-square HP model, focuses on hydrophobic forces in protein structures (Dill 
1985). Because global-optimization methods require both energy and its space 
derivatives, the on-lattice approach cannot be used (Liwo et al. 1997). The solution 
is to use an off-lattice system (Gibbs et al. 2001; Saunders et al. 2002; Kim et al. 
2007). A combination of on- and off-lattice approaches has also been applied 
(Zhang and Skolnick 2004). The modeling accuracy of structures depends on the 
underlying lattice (Mann et al. 2009). 

The best models are produced by methods that combine both knowledge-based 
and physics-based approaches (Zhang 2008). Although ab initio modeling gives 
very promising results it is still best suited for tiny proteins.  
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2.7.3 Evaluating protein models 

In order to successfully utilize models in investigating biological phenomena, the 
models should be as correct a representation of the real structure as possible. To 
evaluate the protein models and methods used to create the models a community 
wide experiment called the Critical Assessment of Techniques for Protein Structure 
Prediction (CASP) was established in 1994 and has been arranged biannually since  

(Moult et al. 1995; Moult et al. 2007). This experiment functions in a double-blind 
manner as predictors have only information about the amino acid sequence and not 
the very recently defined experimental 3D structure, and assessors do not know the 
participating groups by name. CASP assessors evaluate the quality of computational 
prediction methods by comparing theoretical models with experimentally 
determined structures. This allows an objective evaluation of the development of 
modeling tools. There are different categories for ab initio and template-based 
methods (Cozzetto et al. 2009). During the CASP evaluations the quality of 
prediction tools has increased slowly but steadily (Kryshtafovych et al. 2005).  

The most common way to assess the quality of the model is to structurally align 
it with the corresponding experimental structure. The most widely used numerical 
measure is the root mean square deviation (rmsd), which measures the distance of 
corresponding α-carbon or backbone atoms when superimposing the model on 
experimental structures. Several methods to conduct the comparison exist, e.g. 
MaxSub (Siew et al. 2000), GDT (Zemla et al. 1999), TM-align (Zhang and 
Skolnick 2005) and MAMMOTH (Ortiz et al. 2002). Protein structural alignment 
methods were recently reviewed (Hasegawa and Holm 2009). 

In absence of an experimental counterpart the quality of the model itself can still 
be determined. Model quality assessment methods only use a model as input and 
produce as an output a real number representing the quality of the model. These 
programs include e.g. PROCHECK (Laskowski et al. 1993), WHATCHECK (Hooft 
et al. 1996), VERIFY3D (Lüthy et al. 1992; Eisenberg et al. 1997), and ProQRes 
(Wallner and Elofsson 2006). Recently Pawlowski et al. evaluated many of these 
programs (Pawlowski et al. 2008). 

The quality requirements of a model are dependent on the biological or medical 
discipline the model is applied to (Goldsmith-Fischman and Honig 2003). Very 
recently the concern of applicability of models has been raised in discussion. In the 
Workshop on Applications of Protein Models in Biomedical Research the 
importance of evaluating the performance and applicability of protein models was 
addressed (Schwede et al. 2009). 
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3. AIMS OF THE STUDY 

The aims of the study were to:  

 

1) Investigate how structure and/or function altering and stability affecting 

amino acid substitutions are distributed in protein structures (I, III). 

 

2) Study the applicability of computational protein structure models in 

explaining biology and making biological and medical interpretations and 

predictions based on models (II).  

 

3) Assess the performance and accuracy of computational stability 

predictions and to define if the predictions are sufficient enough to be 

used in biological and medical interpretations (III). 
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4. MATERIALS AND METHODS 

4.1 Data collection (I-III) 

The thesis project has used large datasets for mutation analysis, which were 
obtained from various publicly available data repositories.  

4.1.1 Mutation data (I, III) 

Mutation data was collected from BTKbase (Vihinen et al. 1995; Dobson 2003; 
Väliaho et al. 2006) for Btk mutations, CD40Lbase (Notarangelo et al. 1996; Ferrer-
Costa et al. 2002; Thusberg and Vihinen 2007) for CD40L mutations, and from the  
Human Gene Mutation Database (HGMD) (Stenson et al. 2003) for the remainder. 
Missense mutations with thermodynamic data (experimentally defined ΔΔG values) 
were obtained from the ProTherm database (Kumar et al. 2006)  

4.1.2 Structural data (I-III) 

The experimental structural data for each of the studies were obtained from the 
Protein Data Bank (PDB) (Berman et al. 2000). 

4.1.3 Structural data (II) 

The homology models were modeled during the last two decades in-house and 
each of them has been published. Models were chosen where coordinates of the 
models were available. Altogether 14 models were examined that included Src 
homology 3 (SH3) domains present in BTK (Zhu et al. 1994), p67phox  and p47phox 
(Korpi et al. 2000), SH2 domains in BTK (Vihinen et al. 1994) and SH2D1A 
(Lappalainen et al. 2000), and a plekstrin homology (PH) domain in BTK (Vihinen 
et al. 1995) and two separate models for BTK kinase domains (Vihinen et al. 1994; 
Holinski-Feder et al. 1998). Two additional kinase domain models were for CSK 
(Joukov et al. 1997) and JAK3 (Vihinen et al. 2000). The two largest structures were 
for starch degrading enzymes neopullulanase (Lamminmäki and Vihinen 1996) and 
α-amylase (Vihinen and Mäntsälä 1990), both of which have central (β/α)8-barrel 
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structures. And finally, prostate specific antigen (Vihinen 1994) and DNMTL3 
(Aapola et al. 2000). 

4.2 Identifying secondary structures (I) 

Secondary structure information for three helix types, two extended -strand 
types and turns and bends were obtained from the DSSP database (Kabsch and 
Sander 1983). A Perl script was written to connect mutation information to protein 
structure data (dssp files). 

If more than one structure existed for a protein or protein domain, the one with 
the highest resolution and longest chain length was chosen. All data was stored in a 
MySQL database. 

4.3 Calculating contact energies (I) 

The RankViaContact service was used to calculate residue-residue contact 
energies based on a coarse-grained model (Shen and Vihinen 2003). The energy 
parameters used for residue-residue contacts (Zhang and Kim 2000) were derived 
considering the secondary structural environments. The contact energies were 
estimated for all the missense mutations located in the secondary structures. 

4.4 Methods used to compare models and 
experimental structures (II) 

The models and experimental structures were compared using several programs. 
Root mean square deviation (rmsd) between models and structures was calculated 
with LGA (Local Global Alignment) (Zemla 2003) and MAMMOTH (Matching 
molecular models obtained from theory) (Ortiz et al. 2002). The quality of the 
models was assessed with ProQres (Wallner and Elofsson 2006) which provides 
three kind of quality parameters: the S score that ranges from 0 (poor) to 1 (perfect), 
the MX score (models with values > 0.1 are correct, > 0.5 good, and > 0.8 very 
good) and the LG score that indicates that the structure is correct when the value is 
>1.5, good when >3, and very good when > 5. All the quality parameters were 
calculated for protein backbones. For detailed analysis of the quality in the protein 
core forming secondary structures, Insight II (Accelrys Inc, San Diego, CA) was 
used. Stereochemical quality was assessed with PROCHECK (Laskowski et al. 
1993).  
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4.5 Protein stability predictions (III) 

The effects of mutations on protein stability were predicted with following 
programs: AUTOMUTE (Masso and Vaisman 2008), MultiMutate (Deutsch and 
Krishnamoorthy 2007), CUPSAT (Parthiban et al. 2006), Dmutant (Zhou and Zhou 
2002), FoldX (Guerois et al. 2002), I-mutant 2.0 (Capriotti et al. 2005), MuPRO 
(Cheng et al. 2006), SCpred (Dosztanyi et al. 1997), SCide (Dosztanyi et al. 2003) 
and Sride (Magyar et al. 2005). The default parameters were applied in all methods. 

4.6 Determination of volume and charge changes (I) 

Changes in residue volumes and charges between native and mutant residues 
were calculated using literature values for isoelectric points (Greenstein and Winitz 
1961) and volumes of amino acids (Pontius et al. 1996). The results were weighted 
by the amount of individual mutations and averaged by the number of mutant 
residues in respective secondary structures. 

4.7 Statistical analysis (I-III) 

4.7.1 Calculating expected mutation values (I) 

Mutation statistics were analysed by comparing the frequencies of the obtained 
mutations with the expected values. Expected values for mutated residues within α-
helices, β-strands and turns and bends were calculated using the distribution of all 
amino acids in respective secondary structures. In the case of the mutant amino 
acids within different secondary structures, the expected values were calculated 
from codon diversity by taking into account all possible amino acid substitutions. In 
order to reveal how the mutation distribution in secondary structures compares to 
the overall distribution of mutations in the dataset, the expectation values for 
mutated and mutant residues were calculated based on all the mutations in 
secondary structures.  

4.7.2 Relative mutability calculations (I) 

Relative mutability was calculated using the formula: 
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where N’ is the least mutated residue type that was obtained by calculating the 
ratio between observed and expected values. N represents the number of mutated 
original or mutant residues for an amino acid type. The relative mutability was 
calculated for each residue type in all the investigated secondary structural elements. 

4.7.3 The quality of the predictions (III) 

The quality of the predictions is described by four parameters: accuracy, 
specificity, sensitivity and Matthew’s correlation coefficient (MCC). In the 
following equations tp, fp, tn, and fn refer to the number of true positives, false 
positives, true negatives, and false negatives, respectively.  

Accuracy =  
fnfptntp

tntp


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tp
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The Matthew’s correlation coefficient ranges from −1 ≤  MCC ≤  1. A value of 

MCC = 1 indicates the best possible prediction while MCC = −1 indicates the worst 
possible prediction (or anti-correlation), whereas MCC = 0 would be expected for a 
random prediction scheme. To be able to correlate the quality parameters for 
different programs with different sizes of test sets containing different amounts of 
positive and negative cases, the numbers of negative cases were normalized to be 
equal to the number of positive cases for each program. 

4.7.4 ROC curves (III) 

The Receiver Operating Characteristics (ROC) curves were used to plot the 
balance between sensitivity and specificity. The web-based calculator for ROC 
analysis at http://www.jrocfit.org was used to determine the overall performance of 
the prediction methods. 
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4.7.5 Determining the significance of results (I, III) 

The 2 test was used to determine the significance of the results. Chi square 
values were calculated using the following formula:  

e

eo

f

ff 2
2 )( 
 ,                                                          

where  is the observed frequency and  is the expected frequency for an 
amino acid.  The results of the χ2 were considered significant if * P < 0.05, highly 
significant if ** P < 0.01 and extremely significant if *** P < 0.001. 
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 36 



5. RESULTS 

5.1 Missense mutations in secondary structures (I) 

Secondary structures are structural building blocks that are the most energetically 
favorable structures in proteins. It is estimated that some 25 – 75% of the length of 
the protein is organized in secondary structures. The aim was to discover how 
disease-related, and thus structure and/or function altering, mutations affect these 
elements. 

The mutational spectrum within different secondary structure types (α-helices, β-
strands and turns and bends) was investigated. The dataset contained 44 proteins 
involved in a large number of clinical traits. The criteria for choosing the proteins 
were a relatively large number of reported disease-causing missense mutations and 
the availability of 3D structures. Experimentally defined structures were collected 
from Protein Data Bank (PDB). 42 of the total of 46 structures had a resolution 
greater than 2.00 Å. There were more PDB entries than proteins because for the 
large BTK and VDR proteins separate structures for different domains existed. 
Proteins in the dataset represented different activities and functions including 
enzymes, signaling proteins, membrane proteins, receptors, etc. The number of 
missense mutations per investigated protein or domain varied from 8 to 240. The 
studied proteins contained altogether 2413 mutations of which 1935 (80%) appeared 
in secondary structures. The number of mutations in helices was altogether 928 
(48%), whereas β-strand structures of extended strands and isolated β-bridges 
contained 550 (28%) and turns and bends 461 (24%) missense mutations.  

Mutations in different secondary structure elements were investigated at the 
amino acid level. Observed values were compared with expected values for original 
and mutant residues. In all secondary structure types arginine was mutated 
significantly more often than expected (according to relative mutability, 7.29 times 
more than the least mutated residue). In helices cysteine and glycine appeared to be 
the most mutated residues after arginine, whereas lysine and glutamic acid were 
strongly underrepresented compared with the calculated expected value. Among 
mutants proline, cysteine, glutamine, tryptophan, lysine and aspartic acid showed 
statistically significant overrepresentation when compared to expected values, while 
serine and leucine were introduced to the helices significantly less frequently than 
expected. In β-structures, besides arginine, glycine and histidine were mutated with 
high frequency. Among mutant residues there were 39 observed cysteine mutants. 
When compared to the calculated expected value (20) this makes cysteine highly 
overrepresented. Alanine, on the other hand, was underrepresented. Otherwise the 
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results were less biased than in helices. Arginine was also statistically the most 
overrepresented residue in turns and bends. Glycine was the only other statistically 
highly significantly overrepresented amino acid. Glycine is the most flexible residue 
because it does not have a side chain. It often appears in tight turns where no other 
residue can replace it. Lysine was highly underrepresented among the mutated 
residues. Interestingly, in turns and bends, arginine was the most enriched amino 
acid among mutant residues whereas in other secondary structure types there was a 
not statistically detectable change among observed and expected arginine mutants (I, 
Tables 5, 6 and 7 and Fig. 1). 

5.1.1 Mutational effects in different physicochemical groups in 
different secondary structures (I, unpublished results) 

5.1.1.1 Disease-causing missense mutations 

In many sites the properties of an amino acid is more important than the 
individual amino acid as itself. This can be seen e.g. in multiple sequence 
alignments of protein families. Thus amino acids were grouped based on their 
physicochemical nature in order to analyse mutational changes in residue categories. 
In this work the following six groups were used: hydrophobic (cysteine, isoleucine, 
leucine, methionine, phenylalanine, valine, tryptophan and tyrosine), positively 
charged (arginine, histidine and lysine), negatively charged (aspartic acid and 
glutamic acid), conformational (glycine and proline), polar (asparagine, glutamine 
and serine) and (alanine and threonine) (Shen and Vihinen 2004). These groups 
follow the amino acid substitution matrices used for sequence alignments and 
database searches. In all the three secondary structure types negatively charged 
residues were seen to be overrepresented. Conformational residues were also 
overrepresented in all three secondary structure classes, but with varying χ2-values: 
9.96 in helices, 10.89 in β-structures and 24.95 in turns and bends. The frequency of 
positively charged amino acid mutating was significantly less than expected. 
Mutations to polar residues were significantly depleted in α-helices and especially 
so in turns and bends. The number of significant observations was lower in mutant 
residues. Negatively charged amino acids were overrepresented in both β-structures 
and in bends and turns, although the enrichment was relatively weak (χ2-values 
being 7.07 and 6.87, respectively). In turns and bends the frequency of positively 
charged mutants was also significantly higher (χ2-value of 7.92). Mutations to 
alanine and threonine were underrepresented in both helices and β- strands. (I, 
Tables 9, 10 and 11) These results likely reflect the importance of the original 
residue. Many disease-causing mutations affect the same positions indicating that 
the site is structurally or functionally important, where by any mutation disrupts the 
protein activity. 
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5.1.1.2 Stability-altering missense mutations 

Mutations affecting stability were obtained from the ProTherm database. In the 
database, the proportion of mutations to alanine is heavily overrepresented due 
alanine scanning experiments. The mutations in the dataset consisted of 1784 
mutations of which 704 were in helices, 453 in β-strand structures and 570 in turns 
and bends (the reminder being outside the secondary structural elements). 

Table 2. Spectrum of stabilizing, destabilizing and neutral mutations in α-helices 
in amino acid groupsa 

Aa group Orig. Expect. χ2 P value Mutant Expect. χ2 P value 

Stabilizing 

A+T 14 12 0,24 6,22E-01 13 9 1,59 2,08E-01 

conformational 7 4 1,86 1,73E-01 8 9 0,11 7,41E-01 

hydrophobic 15 25 3,89* 4,85E-02 43 26 11,08*** 8,73E-04 

negative 10 12 0,32 5,73E-01 3 6 1,31 2,53E-01 

polar 21 10 12,26*** 4,64E-04 4 13 6,07* 1,38E-02 

positive 8 12 1,22 2,70E-01 4 12 5,55* 1,85E-02 

 75 75   75 75   

Destabilizing 

A+T 76 60 4,14* 4,20E-02 136 45 183,52*** 8,24E-42 

conformational 7 21 9,01** 2,69E-03 52 44 1,41 2,36E-01 

hydrophobic 202 122 52,73*** 3,82E-13 99 128 6,44* 1,12E-02 

negative 31 59 13,02*** 3,08E-04 18 28 3,67 5,55E-02 

polar 26 49 10,68** 1,08E-03 37 63 10,66** 1,09E-03 

positive 26 58 17,52*** 2,84E-05 26 60 19,33*** 1,10E-05 

 368 368   368 368   

Neutral 

A+T 58 43 5,48* 1,93E-02 71 32 47,69*** 4,99E-12 

conformational 9 15 2,17 1,41E-01 14 31 9,56** 1,99E-03 

hydrophobic 72 86 2,41 1,21E-01 87 91 0,14 7,09E-01 

negative 40 42 0,06 8,06E-01 23 20 0,46 4,98E-01 

polar 52 35 8,7** 3,19E-03 40 45 0,48 4,90E-01 

positive 30 41 2,96 8,53E-02 26 43 6,48* 1,09E-02 

  261 261 261 261     
aχ2-numbers in italics indicate underrepresentation and numbers in bold 
overrepresentation compared to random distribution based on amino acid 
frequencies. The results of the χ2 are shown with significance level: * P < 0.05; ** P 
< 0.01; *** P < 0.001. 
 

The distribution of mutations in different secondary structures was investigated 
in different physicochemical groups separately amongst stabilizing, destabilizing 
and neutral mutations. A threshold of ΔΔG ≤ -0.5 kcal/mol was used for stabilizing 
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mutations, ΔΔG ≥ 0.5 kcal/mol destabilizing, and values between thresholds were 
considered neutral.  

Table 3. Spectrum of stabilizing, destabilizing and neutral mutations in β-strands 
in amino acid groupsa 

Aa group Orig. Expect. χ2 P value Mutant Expect. χ2 P value 

Stabilizing 

A+T 16 8 6,91** 8,58E-03 6 8 0,33 5,63E-01 

conformational 2 5 1,73 1,88E-01 0 7 7,43** 6,40E-03 

hydrophobic 13 30 9,51** 2,04E-03 33 22 6,14* 1,32E-02 

negative 17 5 30,54*** 3,27E-08 4 5 0,12 7,32E-01 

polar 5 7 0,48 4,88E-01 9 11 0,24 6,24E-01 

positive 9 7 0,45 5,01E-01 10 10 0 9,69E-01 

 62 62   62 62   

Destabilizing 

A+T 19 34 6,96** 8,33E-03 99 31 147,11*** 7,41E-34 

conformational 9 20 6,23* 1,25E-02 35 31 0,64 4,23E-01 

hydrophobic 179 123 25,76*** 3,86E-07 80 88 0,81 3,68E-01 

negative 26 20 1,86 1,72E-01 6 20 9,36** 2,22E-03 

polar 12 28 9,14** 2,49E-03 24 44 8,80** 3,01E-03 

positive 10 30 12,98*** 3,15E-04 11 42 22,54*** 2,06E-06 

 255 255   255 255   

Neutral 

A+T 19 18 0,02 8,88E-01 22 17 1,72 1,90E-01 

conformational 10 11 0,06 8,10E-01 6 16 6,51* 1,07E-02 

hydrophobic 50 65 3,66 5,58E-02 61 47 4,05* 4,43E-02 

negative 34 11 51,48*** 7,22E-13 11 10 0,03 8,54E-01 

polar 8 15 3,22 7,28E-02 14 23 3,68 5,52E-02 

positive 15 16 0,04 8,43E-01 22 22 0 9,65E-01 

  136 136     136 136     
aχ2-numbers in italics indicate underrepresentation and numbers in bold 
overrepresentation compared to random distribution based on amino acid 
frequencies. The results of the χ2 are shown with significance level: * P < 0.05; ** P 
< 0.01; *** P < 0.001. 
 

Among the destabilizing mutations in all secondary structures hydrophobic 
residues were significantly overrepresented. In α-helices and β-strands positively 
charged residues were underrepresented. Negatively charged residues were 
underrepresented significantly in α-helices and also in turns and bends. In contrast, 
negatively charged aspartic acid and glutamic acid were observed to mutate as 
expected in β-strands. When examining stabilizing mutations the polar group was 
significantly overrepresented in α-helices whereas in β-strands the negatively 
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charged residues mutated significantly more than expected. In turns and bends the 
negatively charged and hydrophobic residues were overrepresented, whereas in 
contrast glycine and proline mutated less than expected and this effect was also 
spotted among neutral mutations. In addition, neutral mutations in turns and bends 
had a significant overrepresentation of hydrophobic and negatively charged 
residues. 

Table 4. Spectrum of stabilizing, destabilizing and neutral mutations in turns and 
bends in amino acid groupsa 

Aa group Orig. Expect. χ2 P value Mutant Expect. χ2 P value 

Stabilizing 

A+T 5 9 1,94 1,63E-01 8 9 0,12 7,24E-01 

conformational 4 18 11,2*** 7,95E-04 9 9 0 9,66E-01 

hydrophobic 22 12 7,51** 6,13E-03 25 26 0,02 8,94E-01 

negative 22 10 15,81*** 6,99E-05 5 6 0,08 7,80E-01 

polar 9 14 1,85 1,74E-01 13 13 0,01 9,21E-01 

positive 12 10 0,29 5,89E-01 14 12 0,3 5,81E-01 

 74 74   74 74   

Destabilizing 

A+T 40 34 0,94 3,32E-01 109 34 168,5*** 1,57E-38 

conformational 56 68 2,22 1,36E-01 31 33 0,12 7,31E-01 

hydrophobic 103 46 70,86*** 3,84E-17 60 95 13,14*** 2,89E-04 

negative 20 36 7,01** 8,10E-03 16 21 1,21 2,71E-01 

polar 29 52 10,46** 1,22E-03 40 47 1,04 3,07E-01 

positive 27 38 3,26 7,09E-02 19 45 14,94*** 1,11E-04 

 275 275   275 275   

Neutral 

A+T 21 28 1,57 2,10E-01 60 27 40,09*** 2,42E-10 

conformational 15 55 29,00*** 7,25E-08 17 26 3,4 6,50E-02 

hydrophobic 64 37 19,86*** 8,33E-06 51 77 8,60** 3,37E-03 

negative 51 29 17,08*** 3,58E-05 24 17 2,97 8,49E-02 

polar 26 42 6,17* 1,30E-02 39 38 0,04 8,42E-01 

positive 44 31 5,80* 1,60E-02 30 36 1,03 3,11E-01 

  221 221 221 221     
aχ2-numbers in italics indicate underrepresentation and numbers in bold 
overrepresentation compared to random distribution based on amino acid 
frequencies. The results of the χ2 are shown with significance level: * P < 0.05; ** P 
< 0.01; *** P < 0.001. 
 

The neutral mutations in α-helices and β-strands followed a similar pattern as 
with the stabilizing mutations. Due to large amounts of mutagenesis studies where 
residues are mutated to alanine, the alanine+threonine group was significantly 
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overrepresented among destabilizing and neutral mutants in α-helices and turns and 
bends, whereas in β-strands it was only amongst the destabilizing mutants. This 
indicates that helix-forming alanines are not tolerated in β-strands. Positively 
charged amino acids were underrepresented in all secondary structures among 
destabilizing mutants. Mutations to hydrophobic residues were significantly 
overrepresented in stabilizing mutants in α-helices (unpublished results, Tables 2, 3 
and 4). 

5.1.2 Changes in amino acid volume and charge due to 
missense mutations (I, III, unpublished results) 

5.1.2.1 Disease-causing missense mutations 

Next the differences in volume and charge between the original residue and the 
replacing mutant residue were examined. Differences at the amino acid level 
showed that there were clear peaks in some residues, and most surprisingly the 
changes in all secondary structure types were very similar (I, Fig. 3 and 4). Glycine, 
which is the smallest residue (68 Å3), was replaced by residues whose volume was 
on average 85 Å3 in turns and bends, 83 Å3

  in α-helices and 78 Å3 in β-strands. 
Tryptophan, being the largest amino acid (237 Å3), was replaced by residues whose 
volume was on average 100 Å3

 in β-strands and 94 Å3
 and 93 Å3

 in α-helices and 
turns and bends, respectively. Being a bulky residue, tryptophan is very rare in turns 
and bends. Of all residues in turns and bends tryptophan accounted for 1% in the 
dataset. Among all amino acids arginine has the highest pI value (11.15) followed 
by lysine (9.59). Changes in charge in α-helices and β- strand structures were minor 
but in turns and bends there were clear peaks in some of the residues. Basic lysine 
and arginine were replaced by residues with lower pI values and cysteine and 
glutamic acid were replaced by residues with higher pI values. 

5.1.2.2 Stability-altering missense mutations 

The changes amino acid substitutions cause to volumes and charges were also 
calculated for mutations that either stabilize or destabilize protein structure and for 
neutral mutations (Fig. 2). The difference between stabilizing or destabilizing 
mutations and neutral mutations were clearly visible among volume changes. 
Among neutral mutations the volume changes were relatively minor with some 
exceptions. The smallest residue glycine peaked because all replacing residues are 
bigger in size. Among turns and bends a single mutating phenylalanine was replaced 
by smaller amino acid, alanine. The distribution in β-strands differed slightly from 
α-helices and turns and bends. Among stabilizing and destabilizing mutations the 
differences between residues were more evident. Tryptophan, tyrosine, 
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phenylalanine and arginine were substituted by smaller amino acids. The charge 
changes due to differences between original and replacing residues showed that 
different secondary structure types were very similar in this respect. Except 
asparagine, the distribution of charge changes in amino acids was very similar in 
neutral and stability increasing/decreasing mutations. Arginine and lysine, having 
the biggest pI values, were substituted with amino acids with smaller pI values.    

 

 

Figure 2. Changes in mutations to residue volumes (top row) and charges (bottom row) for 

stabilizing and destabilizing mutations (left) and neutral mutations (right). 

Average changes in mutations to residue volumes and charges in α-helices (red), 

β-strands (blue), turns and bends (green). The thick line indicates the original 

amino acid volume or charge. Considering volume changes outer rings indicate 

addition in volume and inner rings reduction while among charge changes the 

outer rings indicate lower pI values and inner inner rings higher pI values 

compared to original. 

The distribution of the size of volume and charge changes among stabilizing, 
destabilizing and neutral mutations followed the normal distribution (minor changes 
being in the majority and big changes being in the tails of the curve) with a slight 
bias in large to small substitutions. When the replacing residue is smaller than the 
original residue it can lead to cavity formation in the protein. The peak indicating 
minor changes in the size of the charge change was more prominent amongst 
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stabilizing and destabilizing mutations. For neutral mutations the charge changes 
were more evenly distributed (III, Figs. 4 and 5). 

5.1.3 Missense mutations affecting strong and weak 
electrostatic interactions (I) 

Contact energies were calculated for the dataset of 44 proteins with 2413 disease-
causing mutations using RankViaContact (Shen and Vihinen 2003). The contact 
energies of the mutated residues ranged from very low -27.6 to relatively high 7.8 
(in RT units). The lower the value the stronger interactions a residue has. The 
mutations were ranked based on their calculated contact energies. A slight majority 
(55%) of the mutations had strong or very strong contact energies. Most residues 
with strong contact energies are important for the stability of the protein structure. 
Many of the disease-related mutations are thus located in crucial structural sites in 
which alterations are deleterious. The count of contact energies of the mutated 
residues were calculated in all proteins and separately for secondary structures. In β-
strands the distribution of contact energies were even, but in other structures the 
distribution was biased towards weak positive contact energies. The contact energy 
distribution for mutations in proteins and secondary structure types was quite 
uniform although the location of the maximal occurrence varied. Also of note is that 
the mutation positions in turns and bends did not appear in sites of very strong 
contacts. Mutation sites in β-structures had very even distribution throughout the 
contact energy range. Residues were organized into six groups based on their 
physicochemical properties and the percentages of strong and weak contact energies 
in the groups were calculated. Among hydrophobic residues more than 90% of the 
original amino acids had strong contact energies. Polar, conformational, positively 
and negatively charged mutated residues had for the most part weak contact 
energies (70–85%). Alanine and Threonine had mainly strong contact energies (I, 
Figs. 5 and 6).  

5.2 Reliability of computational methods in predicting 
mutational changes (III) 

Several programs predict the mutational effect on protein stability. The aim of 
this study was to evaluate the overall performance of nine programs and the 
performance among particular subsets (different secondary structures, protein 
folding types, protein core/surface). The tested programs were CUPSAT, Dmutant, 
FoldX, I-Mutant, MultiMutate, MUpro, SCide, Scpred and SRide. Programs SCide, 
Scpred and SRide, which predict stability centers in proteins, were assumed to 
predict only the loss of structural stability caused by mutations. The other programs 
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can evaluate both stabilizing and destabilizing changes. Experimental measurements 
of stability changes due to missense mutations were used in testing the predictors. 
Altogether the test set consisted of 1784 single mutations identified in 80 proteins. 
The whole dataset could not be run with every program because some of the 
programs had been trained with the same mutations and therefore the size of the test 
set for each program varied from MUpro (166) to the whole test set. A threshold of 
ΔΔG ≤ -0.5 kcal/mol was used for stabilizing mutations, ΔΔG ≥ 0.5 kcal/mol for 
destabilizing and values between thresholds were considered neutral. In the 
ProTherm database the signs for the ΔΔG values were inverted. All the tested 
stability predictors showed a coherent trend in their predictions that was in line with 
experimental data. However a closer look revealed clear differences between the 
programs when tested with real life cases.  

First the distributions of predicted ΔΔG values produced by different programs 
along with the experimental ΔΔG values were investigated. The distribution of the 
predicted and experimentally defined ΔΔG values followed the normal distribution 
quite well. The values predicted by I-Mutant and CUPSAT were biased towards 
negative values whereas those for Dmutant towards positive values, although the 
highest peak appeared at 0 indicating a large number of neutral mutations. FoldX 
did not show a clear peak. Interestingly there was a peak at the negative end.  There 
were a large number of predicted ΔΔG values that were smaller than -4 kcal/mol 
(III, Fig. 1). 

For evaluating the performance of the prediction programs four measures were 
used: accuracy, specificity, sensitivity and correlation coefficient. These measures 
were calculated separately for stability increasing and decreasing cases and for all 
cases. The overall performance was the best for Dmutant, FoldX and CUPSAT, 
which have accuracies ranging from 0.50 to 0.56. MUpro has the highest sensitivity, 
above 0.70, closely followed by I-Mutant and CUPSAT. The specificity was best for 
Dmutant. However, the Matthew’s correlation coefficient was poor for all the 
predictors. The worst overall MCC result was obtained with MUpro (-0.39). These 
poor results were due to the large number of false positive and negative cases. 
Programs succeeded better when considering their ability to predict stability 
increasing or decreasing mutations separately. Dmutant had the highest accuracy, 
sensitivity and MCC for stabilizing mutation predictions, 0.74, 0.43 and 0.35, 
respectively. FoldX and Dmutant were the best methods for the prediction of 
destabilizing mutations both having MCC 0.38. CUPSAT also performed well. The 
sensitivity measures the proportion of actual positive cases which are correctly 
identified as such. MUpro succeeded best in this respect having sensitivity of 0.89. 
All programs had specificity over 0.50. Of the stability center methods, which can 
be applied only to the prediction of destabilizing mutations, all  three programs had 
very equal accuracy but on other terms Scpred was the most reliable and SCide the 
poorest. The results were somewhat below the values for the best general predictors 
(III, Table 1). 
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The balance between sensitivity and specificity can be investigated with ROC 
curves. Programs that predict the ΔΔG as numeric values were included in this 
analysis. The performance of FoldX, I-Mutant, Dmutant and CUPSAT showed a 
steep rise in the curves indicating that all these methods succeeded rather well. 
However, the curves bent strongly already at around 0.6. The areas under the curve 
(AUCs) for each of the methods were between 0.79 and 0.83 (III, Fig. 2). 

5.3 Reliability of computationally produced protein 
models in predicting mutational changes (II) 

Homology modeling has been widely used to study biological phenomena such 
as ligand binding and mutational effects. In this study 14 homology models were 
examined, most of which had been predicted years before the experimental structure 
became available. Models were chosen so that coordinates of the models were 
available. Studied models included all the Btk domains (excluding TH domain), 
p67phox and p47phox SH3 domains, SH2 domain in SH2D1A, PSA enzyme, CSK and 
JAK3 kinases and starch degrading enzymes neopullulanase and α-amylase.  

A model can be considered good if the rmsd is in the range of the value for 
experimental structures with a given identity. The majority of the models had 
expected or even better rmsd values than their sequence identity would suggest (III, 
Fig.1). Several quality measures were calculated for the models, templates and 
experimental structures. Generally and as expected, in the models there were 
somewhat fewer amino acids in the most favored region on the Ramachandran plot 
than in the experimental structures (II, Supplementary table 1). The quality of 
protein models was first assessed with several evaluators: ProCheck, LGA and 
MAMMOTH as well as ProQres, which measures the local quality of a model.  

ProQres provides several parameters. The S score has been normalized to a range 
from 0 (poor) to 1 (perfect). The lowest S score value (0.33) was for the BTK PH 
domain. This most certainly was due to low sequence identity with the template 
(only 8%). For all other models the S score ranged from 0.43 to 0.54 indicating that 
the models were good. The smallest MX value (0.31) was for the BTK SH2 domain 
and the best (0.95) for the p47phox SH3 domain. All the models had LG score values 
higher than 3.5, the highest ranging close to 9. Based on this score all except one of 
the models (BTK SH2) were very good. The values were calculated for protein 
backbones. When considered that most of the models had been very difficult to 
make, because of very low sequence identity, the obtained results can be deemed as 
good and all the models suitable for biological interpretations. 

The overall structural quality was evaluated using LGA and MAMMOTH. The 
rmsd values were below 2 Å for 11 of the modeled proteins or domains when 
analyzed with LGA, and below 3 Å when MAMMOTH was used. The values for 
LGA were clearly better than those for MAMMOTH, because rmsd values in LGA 
was calculated on n residues superimposed under the distance cutoff of 4.0 Å. 
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MAMMOTH uses  a heuristic  method  to  find the maximal structural subset of two 
proteins with  the  same  backbone  and  three-dimensional  conformation. 

 
 

 

Figure 3. Superimposition of models (yellow ribbon) with experimental structures 

(turquoise ribbon). A) BTK SH3 domain, B) CSK kinase domain, C) SH2D1A 

SH2 domain D) prostate specific antigen. In the experimental structure 

secondary structure elements are colored as follows:  α-helices in magenta and 

β-strands in blue. 

    α-Amylase, neopullulanase and the PH domain had the highest rmsd values 
(and the lowest sequence identity). Rmsd values are good parameters for comparing 
closely related structures; problems emerge when structures contain different parts. 
LGA and ProQres aim at taking local structure into account.  
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The protein cores were compared by superimposing central secondary structural 
elements, which are the most conserved parts of the structures. The values for the 
backbone atoms in these elements ranged from 0.7 to 1.7 Å and for all heavy atoms 
from 1.6 to 3.7 Å. In figure 3 a comparison of the model with an experimental 
structure is shown as superimposed images. Different secondary structure elements 
are color coded and it can be seen that these parts were superimposed almost 
perfectly. The multidomain proteins were analysed by considering domains or lobes 
separately. These results indicate that (i) the templates have been suitable, (ii) that 
the general protein folds are well conserved and models reliable, and (iii) that the 
large rmsd values for LGA and MAMMOTH are mainly due to side chains and 
surface loops, which are known to be difficult to model and to be variable in protein 
families (III, Tables 1 and 2).  

The main focus, however, was to validate the correctness of biological 
interpretations based on models compared to experimental structures. The models 
were originally modeled to investigate biological properties ranging from catalytic 
site detection to binding affinity and from disease-causing mutation consequence 
studies to protein function and stability estimations. The majority of predictions 
made based on models were congruent with experimental results. Nearly all of the 
models were originally studied to predict binding with varying targets. For example, 
to study the effect of the mutation, a peptide corresponding to the mutation region 
was docked to the p47phox SH3 domain model. The comparison of experimentally 
defined structure revealed that peptide binding of p47phox SH3 domain was correctly 
placed. The model of BTK SH2 was used to predict that mutations R288W and 
R307G affect pY binding, and Y334S and Y361C as structural and L369F 
specificity affecting. The NMR structure of the BTK SH2 domain indicated that 
residues R288 and R307 indeed were involved in pY binding and that Y334, Y361 
and L369 were located in the pY+3 binding site. One missense mutation, Y304F in 
the lower lobe, was explained based on the model as having a structural effect 
originating from the disruption of hydrogen bonding with R244 in the upper lobe. 
The experimental structure of CSK (Lamers et al. 1999) revealed that the interaction 
was correctly predicted. In the BTK kinase domain several mutations exist in the 
ATP binding site. The ATP binding site and catalytic residues are the most 
conserved sites in kinase sequences and structures. This was verfied by the 
comparison between the model and the experimental structure. The predictions for 
mutations to affect the function of the kinase were thus correct for mutations located 
in the ATP binding site. In JAK3 kinase the L910S substitution was suggested to 
lead to a structural alteration, which was verified by the X-ray structure. Seeing the 
mutation in the structural context showed that the hydroxyl group of the mutant 
serine points to the protein core. In α-amylase the catalytic site residues were 
correctly predicted and D234, E264 and D331 were also tested by mutagenesis. 
Alterations in these residues abolished the enzyme activity although the protein 
folds correctly. Also D105, D203 and H238 were correctly predicted to bind to Ca2+ 
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(CaI). The catalytic amino acids of neopullulanase were successfully determined 
based on the model. 
 

 

 

Figure 4. Model of Btk kinase domain. ATP is in green and Mg+ ions as red spheres. 

Disease-causing missense mutations that were correctly predicted to affect 

stability are in magenta. 

In Figure 4 the modeled structure of Btk kinase domain is illustrated. Mutations 
L506Y, A508D, C502, C506, M509, P619T, R641H, D521G, and V626G are 
highlighted in the figure. These mutations were thought to affect stability based on 
the Btk kinase model (Saha et al. 1997; Holinski-Feder et al. 1998). Evaluating the 
validity of the prediction with the experimental structure of Btk kinase (Mao et al. 
2001) verified that the prediction was correct and the mutations indeed affect 
protein stability. The residues A508, C502, C506, and M509 are located in one of 
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the α-helices in the lower lobe of the kinase domain. Replacement of any of these 
residues, which are at corresponding positions in successive turns, causes a 
structural alteration. In consequence of amino acid substitution A508D a charged 
residue appears in the hydrophobic core of the domain and this alters the protein 
stability.  
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6. DISCUSSION 

6.1 Disease-causing missense mutations in secondary 
structures show strong trends  

The replacement of a native residue due to missense mutation can be either 
benign e.g. polymorphisms, or disease-causing. It has been shown that most 
positions in proteins can be altered without serious effects on protein structure or 
function (Frillingos et al. 1998). On the other hand, the majority of disease-causing 
mutations have structural effects (Yue et al. 2005). Therefore, mutations that are 
phenotypic for disease indicate the importance of the specific position of the 
mutation. Mutation statistics have been studied at a general level (Ferrer-Costa et al. 
2002; Partridge et al. 2004; Sanders and Myers 2004) as well as a structural level 
(Ferrer-Costa et al. 2002; Steward et al. 2003). In contrast to previous studies the 
aim of the present study was to analyse changes in mutability, residue charge and 
volume changes and contact energies of disease-causing mutations within secondary 
structure types separately. 

A dataset of 2413 disease-causing mutations from 44 proteins had their positions 
in protein secondary structure types identified and finally 1935 (80%) were found to 
appear in secondary structures. This followed the overall distribution of amino acids 
within and ouside secondary structures among studied proteins. The values were 
seen to be higher for mutated residues than for mutant residues, indicating that the 
original residue in many instances is very important and substitutions to any other 
residue are not possible without detrimental effects.  

When examing the results the most prominent feature was the high mutability of 
arginine irrespective of secondary structure type. The finding was in good 
concordance with previous studies (Steward et al. 2003). The reason for the high 
mutability of arginine is due to a high frequency of CpG dinucleotides in codons 
that code for arginine. CpG dinucleotides can spontaneously mutate by deamination 
either to TG or CA dinucleotides (Coulondre et al. 1978). Arginine is coded by six 
codons, four of which have a CpG dinucleotide in the first and second codon 
position. Also, the surrounding sequence context has an effect on mutability (Ollila 
et al. 1996). Point mutations in arginine lead mostly to cysteine and glutamine, 
which have relatively high mutability values. 

A large proportion of two residues, arginine and glycine, were seen to be 
responsible for 25% of all missense mutations, and in 23% they were present in the 
examined secondary structures. This indicates that these two residues are related 
more than others to pathological effects. This result is in line with previous studies 
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(Vitkup et al. 2003). Glycine has been previously shown to destabilize helix 
structure due to the flexibility it introduces to the peptide bond (Chakrabartty et al. 
1991; Malkov et al. 2008). The mutant residues in turns and bends have a more even 
distribution than the other two elements because practically any mutation to key 
residues in a tight hairpin turn leads either to the loss of hydrogen bonds or does not 
allow tight turn formation and leads to consequent structural alterations. 

Large changes in the properties of mutant amino acids, in volume or charge, are 
disease-related, but notably there are differences for the different structural 
elements. 

About half of the mutation sites are involved in strong or very strong amino acid 
interactions. However, the distributions are surprisingly similar among different 
secondary structures except for β-strands. When investigating contact energies more 
closely it could be seen that more than 90% of mutated hydrophobic residues had 
strong contact energies. Hydrophobic residues are normally located in protein core 
and they are responsible of packing of the core by forming van der Waals and 
hydrogen bonding.     

6.2 Predicting stability changes due to missense 
mutations is challenging 

Stability changes can be studied experimentally but is laborious, time consuming 
and often also costly. Therefore reliable computational stability prediction methods 
would prove valuable. To sort out the programs and identify those that are capable 
of providing reliable results benefits not only the users but also the development of 
the computational tools. In this study, a systematic assessment of the the ability of a 
nine online computational programs to correctly predict the effects of missense 
mutations on protein stability was performed. As a test set, 1784 single mutations 
found in 80 proteins were used, excluding cases used for training the programs. 
Stability predictors have been evaluated previously (Lonquety et al. 2008; Potapov 
et al. 2009) but in the present study the largest amount of programs were included in 
comparisons. The intent of Potapov and colleagues was to correlate experimental 
and predicted ΔΔG values, while this study aimed at determine whether the 
stabilizing or destabilizing effect caused by a mutation could be correctly predicted 
as for mutations associated with disease states, the sign of the stability change is 
what is needed. The analysis revealed that the predictors provide ΔΔG values with a 
similar distribution of values as in the experimental data, which is in good 
concordance with previous study (Potapov et al. 2009). The ROC curves are quite 
similar to those in a study correlating function and stability in missense mutations 
(Bromberg and Rost 2009).  

The structural context of the residue has a strong effect on predictor performance. 
Both the secondary structural element and protein folding type have a significant 
effect. There is also a clear difference for buried and accessible amino acids. The 
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effect depends on the method and varies for the quality parameters. On the other 
hand, the extent of volume or charge change upon mutation does not influence the 
prediction performance significantly. 

In this study the best single stability predictors can predict the mutation effects at 
moderate accuracy. However, the discovery rate of false positives and false 
negatives was found to be high. This is because so many factors affect protein 
stability and even rather small changes in the ΔΔG values between normal and 
mutant forms of a protein can be significant. Although MD and MC methods are 
more accurate even they have problems in the analysis of mutation effects. Their 
computational power demands are prohibitive for analysis of large datasets. 
Experimental ΔΔG values were derived from the ProTherm database. The data in 
the ProTherm database is biased because of the huge overrepresentation of alanines. 
This is due to massive alanine scanning intiatives carried out by several research 
groups.  

The prediction accuracy for stability estimation still has not reached a 
satisfactory level in spite of large efforts. The understanding of the basic factors of 
thermostability is still limited, especially regarding the relative contribution of each 
term. In addition the complexity of sampling multi-dimensional space makes 
determination of the entropic free energy a difficult task. 

There are two concerns related to stability predictors. In case of machine learning 
or knowledge-based methods with few exceptions the training and optimization of 
parameters to improve the prediction accuracy depends on the available 
experimental stability data. Khatun et al. has raised the concern whether parameters 
obtained from these trainings can be applied to other cases (Khatun et al. 2004) and 
especially the size and quality of the training set is crusial. The other concern is 
backbone strains caused by mutations. Due to mutation a structural rearrangement 
can take place in order to release the strain. Currently Eris is the only stability 
prediction method that takes into account the protein backbone flexibility. It was 
measured by Potapov et al. that backbone movements upon single amino acid 
substitution results on average 0.34 Å difference between native and mutated 
protein structure (Potapov et al. 2009).  

A majority of the methods are either knowledge-based or machine learning 
approaches that are optimized or trained with cases present in ProTherm database to 
distinguise stabilizing and destabilizing cases. Reumers and coworkers made an 
attempt to distinguish disease-causing mutations and SNPs based on stability 
changes and residue burial. They judged that discrimination cannot be done based 
on these properties (Reumers et al. 2009). However their opinion was built on 
results gained with one stability prediction program, FoldX. In present study it was 
shown that FoldX is among the best stability predictors, but even so it fails to 
accurately distinguish cases with known stability alterations. Yue et al. studied a 
support vector machine (SVM) trained on a set of disease-causing mutations, and a 
control set of neutral mutations. Their method identified 74% of disease-causing 
mutations, with a false positive rate of 15%. The method’s effective distinction 
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between disease and neutral mutations, provide evidence that loss of protein 
stability are related to monogenic disease (Yue et al. 2005). As the ProTherm is 
currently the only large data source for experimental data and taking into account its 
biased distribution, the performance of the tested programs can be affected by this. 
Capriotti et al. have addressed this problem by developing a predictor that classifies 
mutations into three classes, destabilizing, stabilizing and neutral mutations 
(Capriotti et al. 2008).    

6.2.1 Stability affecting missense mutations 

Currently the largest data repository for experimentally defined stability-altering 
mutations is the ProTherm database. The database contains 11752 single mutations 
in 282 protein (release 30th November 2009) (Kumar et al. 2006). In the dataset used 
in study II missense mutations with measured ΔΔG value and structural information 
resulted 1784 mutations of which 704 were in helices, 453 in β-strand structures and 
570 in turns and bends (the reminder being outside the secondary structural 
elements). The data was inspected more closely in different secondary structure 
types in different physicochemical groups similarly as in study I for disease-causing 
mutations. Among cases derived from the ProTherm database alanine is highly 
overrepresented among destabilizing mutants as already known. Hydrophobic 
residues are overrepresented among destabilizing mutations indicating the 
importance of native hydrophobic amino acids to maintain the protein core packing. 
Comparing stability affecting mutations to disease-causing mutation a few common 
patterns can be seen. In α-helices polar and positive mutations are underrepresented 
and the effect is destabilizing. Among β-strands and turns and bends negative 
residues mutate more often than expected and the effect is stabilizing. Gromiha and 
coworkers have also studied mutation cases in ProTherm database and they 
conclude that protein mutant stability is strongly dependent on secondary structure 
and location of residues based on accessible surface area (Gromiha 2007).  

The volume and charge changes between stability-altering mutations and neutral 
mutations were investigated. The different secondary structures do not differ 
greatly. In contrast the difference between neutral and stability affecting mutations 
is clearly seen. In former case the charge and especially volume changes between 
native and mutated residues are large whereas in netral cases the changes are minor 
indicating the conformatonal effect of large changes into protein structure. 
Compared to disease-causing mutations the distribution and patterns of the changes 
are almost identical. 
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6.3 Investigating the consequences of missense 
mutations in the absence of experimental structures 

 
It has been possible to achieve a comprehensive insight into protein structure and 

function and their relationships by X-ray crystallography and by nuclear magnetic 
resonance (NMR) spectroscopy (Chasse et al. 2001). However, many proteins have 
proven difficult to crystallize (e.g. membrane proteins) or are too large to be studied 
with NMR. In addition the methods are time-consuming and often very laborious. 
Although the number of experimental structures is steadily increasing, the amount 
of new protein sequence data is growing even faster and the gap between sequence 
and structure data is growing. Protein modeling has been used for protein structure 
prediction in order to bridge the gap.  

In this study the comprehensive review was conducted on a series of in-house 
modeled homology models from previous years, for which experimental structures 
are now available. The purpose was to extend the analysis from purely geometric 
quality criteria to the assessment of the (previously published) functional 
interpretations based on the models. Various methods for target-template sequence 
alignment for the individual models were used. Models were built manually using 
various methods for modeling and energy minimization. Model quality was 
estimated using ProCheck and ProQres and model error assessed by comparing with 
the experimental structures using LGA and MAMMOTH. For each of the models 
the estimated model quality, the model error, and interpretations previously 
published based on the models, were studied.  

Sequence similarity and the rms deviation have been shown to have a correlation 
in related structures. Results of present study confirm this, for example the average 
rmsd for structures with sequence identity below 40% is over 1.5 Å for main chain 
atoms in the core regions. For models with corresponding sequence identity it is 
difficult to obtain better values, i.e. sequence identity with the template already sets 
limits for expected quality. 

The homology modeling has been proven to be most accurate computational 
modeling approach (Furnham et al. 2008). However, there are pitfalls in different 
steps of homology modeling procedure. For example the sequence alignment of 
template sequence(s) is a very crucial as further steps are based on the aligment. In 
one case of the present study it was observed that a model was built completely 
wrong due to erroneous sequence alignment. Part of the structure of the DNA 
cytosine-5-methyltransferase-like protein (DNMTL3) was modeled based on the 
LIM zinc finger structure (Aapola et al. 2000), with which there was only very low 
sequence similarity (11%). The structure was solved with X-ray diffraction (Ooi et 
al. 2007) and the model had wrong disulfide connectivity and was thus wrong.  

A common feature in experimental methods is that they produce structure of in 
vitro protein. Crystal structure represents just one fixed view of the dynamic 
structures of proteins. On the other hand NMR produces an ensemble of structures 
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showing structural variations. The modeled structure for the BTK SH3 domain fits 
well with the alternative conformations calculated from distance information from 
NMR.  

Very recently the concern of applicability of models has been raised in 
discussion. In the Workshop on Applications of Protein Models in Biomedical 
Research the importance of evaluating the performance and applicability of protein 
models was addressed (Schwede et al. 2009). They reviewed that protein models 
have been successfully utilized in several applications in biology and medicine. 
These include drug discovery, biotherapeutics, biologicals, and industrial enzymes, 
protein-protein interactions, membrane binding specificity, ligand specificity of 
receptors, substrate specificity of enzymes, analysis of mutations and cancer 
biology. In contrast, in study III, all the homology models investigated were first 
systematically explained and assessed with several purely structure related measures 
and, on top of that, the biological aspects of usability of the models were evaluated. 
It was shown that indeed homology models can be used to explain biology equally 
well as experimentally solved structures. The interpretations based on a model 
(BTK PH domain) with an identity even as low as 8% with its template were as 
correct as interpretations based on models with higher template identity.  

Yue et al. demonstrated that experimentally solved structures and protein models 
based on experimental templates down to 40% sequence identity provide equally 
accurate predictions on mutational effects. In their study, where sequence identity 
with template was below 30% or lower, errors in models began to have a significant 
effect (Yue et al. 2005). However these comparative models were achieved 
automatically whereas all models discussed in study III were manually built and 
additional information was added to aid the modeling process.  

The accuracy requirements for a homology model are dependent largely on a 
purpose the model has been constructed. For example, if a model is used in 
structure-based drug design, a highly accurate description of the ligand binding site 
is needed. In order to build such a model high sequence identity with template is 
required, preferably over 30% identity (Goldsmith-Fischman and Honig 2003). In 
present study the homology models were based on low levels of sequence identity to 
the template, half of the 14 models had template identity lower that 30%. The 
biological explanations made based on models were very much in line with more 
recent experimental evidence – thus indicating the power of protein modeling. It 
was shown that from extremely moderate template identity as a starting point it is 
still possible to achieve a proper model with correct scaffolding. It was also shown 
that models that are ranked as at least correct or good with model quality assessment 
tools were proven to be highly useful in studying biological and medical 
phenomena. 
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7. SUMMARY AND CONCLUSIONS 

In this study, the mutational map of disease-causing alterations was provided. 
The uneven division of mutations in different secondary structure types indicates the 
importance of the location of the mutation. In addition, differences in residue 
volume and charge changes are dependent on the structural context. In over half of 
the mutation cases a direct connection to protein stability could be observed. In 
order to correlate the effects of lost original (mutated) and mutant residue to protein 
structure it is important to know in which secondary structural element the alteration 
appears. This analysis revealed mutation types which have most likely deleterious 
effect on protein. 

Proteins are dynamic molecules with marginal stability. This subtle balance of 
stability of protein structures explains the potential drastic effect one amino acid 
substitution can induce. In this study the stability predictors were assessed in a 
comprehensive way. The results show that despite all the tested stability predictors 
showing a coherent trend in their predictions, which was in line with experimental 
data, at best, the predictions were only moderately accurate. However, the programs 
succeeded better in predicting stability increasing and decreasing mutations 
separately. The accurate estimation of protein stability changes induced by 
mutations still remains a significant challenge. 

In the absence of experimental 3D protein structure data, the mutation-induced 
alterations in stabilizing interactions can be studied using protein models. Protein 
models obtained with homology modeling have been widely used to interpret a large 
scale of biological phenomena, such as mutational effects on protein structure. In 
this study the assessment of the quality of the models was extended to the 
assessment of biological explanations made based on models. Majority of evaluated 
predictions based on models with even very low sequence identity with the template 
yet with correct scaffolding were found to be in concordance with interpretations 
based on experimental structures and other experimental studies.  

In conclusion, the described study provides new information on the structural 
effects of disease-causing missense mutations and the applicability of tools utilized 
to study mutational effects on protein structure and stability. The study indicates that 
there is great potential in prediction tools described here to be used efficiently in 
analysis of mutation effects and that this kind of evaluation is needed in order to 
further develop the prediction methods. 
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