Detection of the Early Radiotherapy-induced Cardiac Changes in Breast Cancer Patients

Impact of advanced echocardiography techniques
SUVI TUOHINEN

Detection of the Early Radiotherapy-induced Cardiac Changes in Breast Cancer Patients

Impact of advanced echocardiography techniques

ACADEMIC DISSERTATION
To be presented, with the permission of the Faculty council of the Faculty of Medicine and Life Sciences of the University of Tampere, for public discussion in the auditorium F115 of the Arvo building, Lääkärinkatu 1, Tampere, on 19 May 2017, at 12 o’clock.

UNIVERSITY OF TAMPERE
SUVI TUOHINEN

Detection of the Early Radiotherapy-induced Cardiac Changes in Breast Cancer Patients

Impact of advanced echocardiography techniques
To my family
Contents

LIST OF ORIGINAL COMMUNICATIONS ... 9

ABBREVIATIONS .. 10

ABSTRACT ... 12

TIIVISTELMÄ (Abstract in Finnish) .. 13

1 INTRODUCTION ... 15

2 REVIEW OF THE LITERATURE .. 16

2.1 Breast cancer .. 16
 2.1.1 Prevalence and characteristics of breast cancer .. 16
 2.1.2 Treatment of breast cancer ... 16

2.2 Radiotherapy ... 17
 2.2.1 Radiotherapy in treatment of cancer .. 17
 2.2.2 Radiotherapy-induced changes in healthy tissues .. 18

2.3 Radiotherapy-induced heart disease (RIHD) .. 21
 2.3.1 Prevalence and clinical characteristics of RIHD ... 21
 2.3.1.1 RT-induced pericardial changes .. 22
 2.3.1.2 RT-induced coronary changes ... 24
 2.3.1.3 RT-induced valvular changes ... 25
 2.3.1.4 RT-induced myocardial changes ... 26
 2.3.1.5 RT-induced changes in heart rhythm and the conduction system 27
 2.3.1.6 RT-induced extracardiac changes in the chest ... 27
 2.3.1.7 Progression of the RT-induced cardiac changes ... 29
 2.3.2 Factors predisposing to RIHD ... 30
 2.3.3 Prevention and treatment of RIHD ... 31

2.4 Detection of early cardiac changes after modern conformal RT ... 34
 2.4.1 Echocardiography .. 34
 2.4.1.1 Conventional echocardiography ... 34
 2.4.1.2 Myocardial deformation imaging ... 34
 2.4.2 Myocardial perfusion imaging ... 35
 2.4.3 Cardiac magnetic resonance imaging ... 35
 2.4.4 Positron emission tomography ... 36
 2.4.5 Exercise testing ... 36
2.4.6 ECG .. 36
2.4.7 Cardiac biomarkers ... 37

2.5 Advanced echocardiography .. 38
2.5.1 Integrated backscatter .. 38
2.5.1.1 Calibrated integrated backscatter 39
2.5.1.2 Cyclic variation of the integrated backscatter 40
2.5.2 Speckle tracking echocardiography 42
2.5.2.1 Global longitudinal strain 43
2.5.2.2 Other measurements in speckle tracking echocardiography .. 45
2.5.2.3 Validation, strengths and weaknesses of the STE measurements ... 48

3 AIMS OF THE STUDY .. 49

4 METHODS ... 50
4.1 Patients ... 50
4.1.1 Recruitment of the patients 50
4.1.2 Study protocol ... 51
4.1.3 Ethical aspects ... 51
4.2 Radiotherapy .. 52
4.3 Echocardiographic examinations 54
4.3.1 Conventional echocardiography 55
4.3.1.1 Conventional two-dimensional echocardiography 55
4.3.1.2 M-mode analysis ... 55
4.3.1.3 Doppler echocardiography 56
4.3.1.4 Pulsed tissue Doppler echocardiography 56
4.3.1.5 Three-dimensional echocardiography 57
4.3.2 Advanced echocardiography 57
4.3.2.1 Integrated backscatter 57
4.3.2.1.1 Calibrated integrated backscatter 58
4.3.2.1.2 Cyclic variation of the integrated backscatter 59
4.3.2.2 Speckle tracking echocardiography 60
4.3.2.2.1 Strain analysis in speckle tracking echocardiography .. 61
4.3.2.2.2 Strain rate analysis in speckle tracking echocardiography .. 62
4.3.2.2.3 Rotation and twist in speckle tracking echocardiography .. 62
4.4 ECG .. 63
4.5 Cardiac biomarkers ... 63
4.6 Statistical methods ... 63
LIST OF ORIGINAL COMMUNICATIONS

This dissertation is based on the following four original publications, referred to in the text by their Roman numerals I-IV. Some additional unpublished data are also presented.

The original publications are reprinted with the kind permission of the copyright holders.
ABBREVIATIONS (in alphabetic order)

ACE: Angiotensin converting enzyme inhibitor
AI: Aromatase inhibitor
ANS: Autonomic nervous system
ARBs: Angiotensin reseptor blockers
BMI: Body mass index
CABG: Coronary artery by-pass grafting
CAD: Coronary artery disease
cIBS: Calibrated integrated back scatter
CMR: Cardiac magnetic resonance imaging
CT: Computed tomography
CTGF: Connective tissue growth factor
CVIBS: Cyclic variation of the integrated backscatter
dB: Desibel
DIBH: Deep inspiratory breath hold
DNA: Deoxyribonucleic acid
Dt: Declaration time
ECG: Electrocardiogram
ECM: Extracellular matrix
FDG: Fluorodeoxyglucose
GCS: Global circumferential strain
GLS: Global longitudinal strain
Gy: Gray
HER2: Human epidermal reseptor 2
hsTnt: High sensitivity troponin T
IBS: Integrated backscatter
IMRT: Intensity modulated radiotherapy
IVA: Acceleration of the isovolumetric velocity
IVRT: Isovolumetric relaxation time
IVV: Isovolumetric velocity
LAD: Left anterior descending coronary artery
LET: Linear energy transfer
LGE: Late gadolinium enhancement
LV: Left ventricle
LVEF: Left ventricle ejection fraction
PDGF: Platelet-derived growth factor
proBNP: pro-B-type natriutetic peptide
Rho-ROCK: Rho and Rho-associated kinase
RIHD: Radiotherapy-induced heart disease
ROI: Region of interest
RT: Radiotherapy
RV: Right ventricle
SPECT: Single photon emission computed tomography
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>Strain rate</td>
</tr>
<tr>
<td>STE</td>
<td>Speckle tracking echocardiography</td>
</tr>
<tr>
<td>TAPSE</td>
<td>Tricuspid annular plane systolic excursion</td>
</tr>
<tr>
<td>TAVI</td>
<td>Transcutaneous aortic valve implantation</td>
</tr>
<tr>
<td>TDI</td>
<td>Tissue Doppler imaging</td>
</tr>
<tr>
<td>TGFβ</td>
<td>Transforming growth factor beta</td>
</tr>
<tr>
<td>TGFβ1</td>
<td>Transforming growth factor beta 1</td>
</tr>
<tr>
<td>TKI</td>
<td>Tyrosine kinase inhibitors</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor alfa</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
</tbody>
</table>
ABSTRACT

Background and aims: Radiotherapy (RT) has been routinely used as a part of cancer treatment since the 1950s. It can be administered as a curative or palliative treatment. Adverse effects in healthy tissue limit the use of RT. RT in the thorax induces cardiac side-effects, which have been associated with 2 to 6-fold increase in cardiac morbidity and mortality. However, cardiac radiation exposure has been significantly reduced with improvements in RT techniques, and the cardiac impact of the contemporary RT is unknown. Our aim was to evaluate whether conformal RT causes echocardiographically detectable changes in the early phase after RT for early-stage breast cancer patients, and to characterise the location and type of the changes.

Subjects and methods: Altogether, 80 patients with early-stage breast cancer were recruited in this single-center prospective study. All patients underwent thorough echocardiographic examination a week prior to the RT and within three days after the completion of RT. In addition, each study visit included an electrocardiogram (ECG), Holter monitoring, blood samples for analysis of cardiac biomarkers and the measurement of blood pressure.

Results: RT induced multiple structural and functional changes in the early phase after RT. The walls of the left ventricle (LV) thickened and their reflectivity increased. In addition, filling of the LV became impaired, and sensitive markers of LV systolic function declined. Furthermore, there were changes in the RV. RV systolic function declined and RV wall reflectivity increased after RT. The changes were associated with RT dose and localisation.

Conclusions: The results of our study demonstrated that RT for early-stage breast cancer induced multiple structural and functional echocardiographic changes in patients with early-stage breast cancer. The changes were more prevalent in patients who received RT for left-sided breast cancer and in patients who received higher cardiac radiation dose. These findings may have important clinical relevance since the subclinical early changes seem to predict future development of radiation-induced heart disease (RIHD). Some of the echocardiography measurements could be suitable for the screening of early RT-induced cardiac changes, and for the follow-up of the patients with high risk of RIHD such as tricuspid annular plane systolic excursion (TAPSE) and global longitudinal strain (GLS). On the other hand, the RT-induced early changes in cardiac tissue reflectivity [integrated backscatter (IBS)] provided new information regarding the possible mechanisms of RT-induced cardiac adverse effects.
TIIVISTELMÄ (Abstract in Finnish)

Potilasaineisto ja menetelmät: Tässä prospektiivisessa yhden keskuksen tutkimuksessa oli mukana 80 potilasta, joilla oli todettu varhaisen vaiheen rintasyöpä. Kaikille potilaille tehtiin kattava sydämen kaikututkimus keskimäärin viikkoa ennen sädehoidon aloitusta ja kolmen vuorokauden kuluttua sädehoidon päättymisestä. Kukin tutkimuskerta sisälsi lisäksi EKG:n, holterin sekä sydänlihaksen vauriota kuvaavien verikokeiden määrityksen ja verenpaineen mittauksen.

1 INTRODUCTION

The World Health Organization (WHO) has estimated that cancer is responsible for more deaths than stroke and cardiovascular diseases combined (1). In 2012 there were over 14 million new cancer cases worldwide, and it has been estimated that the annual rate of new cases will be over 20 million in 2025 (1). Breast cancer is the most common cancer in women. In 2012, there were 1.67 million new breast cancer cases globally (1). In Western Europe, the incidence of breast cancer was 94-96 per 100,000 patients (2, 3), and it has been estimated that one in eight women will be diagnosed with breast cancer in her lifetime (4, 5).

Radiotherapy (RT) is the most important non-surgical treatment for cancer. It has been estimated that more than half of the cancer patients require RT either to cure or to alleviate cancer-related symptoms (6). The cost of RT is low, and it accounts for only approximately 5% of the total cost of cancer treatment (7). On the other hand, its adverse effects on healthy tissue limit the use of RT. A small part of the RT is distributed or scattered to the nearby healthy tissue. RT in the chest can affect the heart (8). This may cause excess cardiac mortality and counterbalance the survival benefit of RT in cancer treatment. It has been estimated that cardiac manifestations are the most important non-malignant causes of excess mortality and are responsible for death in one-quarter to one-third of the patients receiving RT in the chest region (4, 9, 10).

RT for breast cancer roughly doubles the risk for radiotherapy-induced heart disease (RIHD) (11). Considering the high number of breast cancer patients and their generally good prognosis (2), RT treatment generates a large patient population that is at increased risk for RIHD. The short- and long-term side effects of cancer treatment have triggered vivid research activity and resulted in recommendations of screening, treatment and follow-up of these patients (8, 11-16). However, the current knowledge is largely based on obsolete treatment protocols, and the knowledge of the impact of modern conformal RT on the burden of clinically significant cardiac sequelae is limited (10). Improvements in RT technology and refinements in the treatment protocols have reduced cardiac radiation exposure (10, 17). The long delay of years to decades in the development of RIHD makes it difficult to evaluate the cardiac benefits of these new protocols in patients receiving RT in the chest region (10). Our study aimed to resolve questions concerning the development of cardiac changes early after modern conformal RT in patients with early-stage breast cancer.
2 REVIEW OF THE LITERATURE

2.1. Breast cancer

2.1.1 Prevalence and characteristics of breast cancer

Breast cancer is the most frequent cancer among women. In the recent years, the incidence of breast cancer has been 94-96 per 100 000 patients in Western countries, and 29 per 100 000 patients in China (2, 3, 18). The incidence of the breast cancer is steadily rising (2, 18, 19). In Finland, over 5 000 new cases are diagnosed annually (3). The risk factors for breast cancer include age, genetic predisposition, ionising radiation, low parity and lack of breast feeding, prolonged hormonal replacement therapy (oestrogen and progesterone), smoking, alcohol consumption, obesity and metabolic syndrome (2, 19). The long-term prognosis of early-stage breast cancer is excellent. In Finland, the 5-year survival is 91%, and the 10-15-year survival is approximately 80-85% (3, 10). Despite this, breast cancer is the leading cause of female cancer mortality, accounting for 450 000 cancer deaths per year among women globally (2, 20).

Breast cancer can be characterised in several ways. In addition to size, the number and spreading of the tumour as well as the morphological and molecular profiles are also important. Morphologically breast cancer is classified into lobular, ductal or other subtype carcinomas, and into invasive or non-invasive carcinoma (in situ) (19). Oestrogen and progesterone receptor expression is evaluated by immunohistochemistry, while human epidermal reseptor 2 (HER2) status can also be identified using in situ hybridisation (2). In addition, mitotic activity is graded (19). Molecular subtyping can be used in combination with clinical characteristics to estimate the prognosis, and to guide the adjuvant treatment of breast cancer (20, 21).

2.1.2 Treatment of breast cancer

Surgery is the cornerstone of breast cancer therapy. Breast-conserving surgery was adopted in the 1980s, and it can be safely performed even in patients with adverse tumor characteristics, such as tumours larger than 5 cm, multifocal tumours (in the same segment), and triple-negative subtypes (2, 21-24). Approximately 60-80% of breast cancer patients in Western Europe are amenable for breast-conserving surgery (2). Patients with extensive ductal carcinoma in situ, with severe contraindications of RT or very young age (<35 years), should be considered for mastectomy. Patients with
inflammatory breast cancer or malignant spreading to the axillary lymph nodes should undergo axillary lymph node dissection (19, 25-27). Adjuvant therapy prior to surgical treatment (i.e., neoadjuvant therapy) is recommended for patients with locally advanced or inoperable tumours as well as to those with inflammatory breast cancer in order to enhance surgical success (2, 21, 28, 29).

Adjuvant therapies include endocrine therapy, chemotherapy, HER2-targeted treatment and RT. Adjuvant endocrine therapy aims to eliminate oestrogen-derived growth stimulus in patients with oestrogen receptor positive breast cancer, which is defined as >1% of the tumour cells expressing oestrogen reseptor (2, 19). Endocrine therapy is recommended for patients with stage I tumours possessing adverse features or patients with stages II or greater tumours (30). The menopausal status defines the treatment of choice (2). Aromatase inhibitors (AIs) block the final pathway of oestrogen synthesis, and they are used in postmenopausal patients (19). Younger patients are treated with antioestrogens (e.g. tamoxifen) or with ovarian suppression with or without AI (2). Chemotherapy is considered for patients who need more aggressive adjuvant therapy due to the increased risk of breast cancer relapse. Characteristics indicating increased risk for relapse include large tumour size, axillary node metastasis, younger age and certain breast cancer subtypes (21, 31). The contemporary chemotherapy regimes for breast cancer include taxanes and anthracyclines (21). Approximately one-fifth of the breast cancers are HER2-positive, and carry a worse prognosis (32-34). HER2-positive breast cancer patients benefit from HER2-targeted therapy, and it is currently routinely applied for these patients (19, 35, 36). RT is administered after breast-conserving surgery. It is also considered after mastectomy in patients with adverse tumour characteristics (2, 19). Post-operative RT after breast-conserving surgery reduces breast cancer mortality by sixth and halves recurrences (37).

2.2 Radiotherapy

2.2.1 Radiotherapy in the treatment of cancer

William Conrad Roentgen discovered X-rays at the end of the 19th century, and the first attempts to use it in cancer treatment were made soon thereafter (38-41). The initial experiences with gastric carcinoma, skin cancer and malignant sarcoma were encouraging, as the size of the tumours declined (40). The first RT machines had low-energy output and low penetrance, and the therapy caused apparent adverse effects with severe skin burns and erosions in patients and in the personnel (41, 42). Lead shields
were employed to protect the healthy tissue, and single high-doses were replaced by multiple lower doses (fractions) in the 1920s (40-42). Orthovoltage machines were replaced by betatrons in the 1940s, and linear accelerators with higher energy output were introduced in the 1950s (41, 43). In the modern era, a pretreatment three-dimensional (3D) computed tomography (CT) scan is routinely used for treatment planning. The treatment is delivered from multiple directions with multileaf collimators to produce a 3D treatment field with maximal therapeutic effect and minimal healthy tissue burden (40, 44). Additional actions are employed to further minimise the adverse effects of the healthy tissue. Patient position, breathing phases and different treatment calculation protocols (intensity modulated radiotherapy, IMRT) are used for this purpose (45-47).

With a strictly fixed patient position, treatment can be administered in one single dose as in stereotactic radiosurgery (48, 49). Different types of radiation can be used to optimise the effect. For example, electrons are well suited for superficial lesions, since their low tissue penetrance assures minimal adverse effects in healthy tissue (45). A new treatment modality, boron neutron capture treatment, allows for a targeted radiation effect in the cancer tissue. The boron-atoms are transported to the cancer tissue by liposomes, monoclonal antibodies or polymers and then activated by neutron beams (50). RT can be given also locally (such as brachytherapy in the treatment of bronchial obstructing cancers), or with radioisotopes or immunoglobulins combined with radiating agents that have specific targets, such as radioactive iodine for thyroid cancer or radioimmunotherapy for the treatment of lymphoma (41, 51-53).

In summary, within the last 100 years, RT has evolved into a sophisticated and versatile treatment tool and has earned its place as an essential part of cancer treatment alongside surgery and chemotherapy. Currently, about half of the cancer patients receive RT (40). In breast cancer patients, adjuvant RT after breast conserving surgery reduces long term relapses by 10-15% and mortality by 4-8% (2).

2.2.2 Radiotherapy-induced changes in healthy tissues

Radiation acts via ionisation. Ionisation is a very rapid process that occurs in 10^{-14} to 10^{-18} seconds (45, 54). Ionisation disrupts the cellular composition either directly or via formation of oxygen radicals (55). The ability of different radiation sources to cause ionisation differs. Energy sources with high linear energy transfer (LET), such as neutrons, have greater direct effects on deoxyribonucleic acid (DNA) strands, whereas
Figure 1. Simplified overview of the pathogenesis of radiation fibrosis. Radiation-induced cellular injury promotes secretion of profibrotic chemokines and cytokines by several mechanisms. The downstream fibrotic signaling can be activated by platelet-derived growth factor (PDGF), transforming growth factor beta 1 (TGFβ1) or by Rho and Rho-associated kinase (Rho-ROCK) pathway. Connective tissue growth factor (CTGF) is a central mediator in the downstream signaling pathway. Several therapeutic targets are presented in the picture. Tyrosine kinase inhibitors (TKI) have been tested to suppress the intracellular cascade, statins to inhibit Rho-ROCK pathway and monoclonal antibodies to block TGFβ1 signaling. ECM, extracellular matrix. Reprinted with permission from Elsevier ltd [Clinical Oncology] (Westbury C.B et al 2012), copyright (2012).

The effects of low LET sources (photons and electrons) are more dependent on an indirect mechanism (45). The energy of radiation absorbed by the tissue is measured by Gray-units (Gy), where each Gy is 1 Joule/kg of absorbed energy (45). One Gy of high LET radiation produces 10^5 ionisations and 1 000 DNA-strands breaks (45).

The inflammatory process is initiated at the time of radiation exposure. Biological effects appear within minutes, and the first signs of the cellular changes can be observed in
histological samples within a few hours (10, 56, 57). Endothelial damage plays a central role in this process (55). Affected endothelium releases inflammatory chemokines and chemoattractants for leucocytes (e.g., E- and P-selectin), and activated neutrophils release pro-inflammatory cytokines in turn (10, 55). Oxygen radicals are formed by ionising effects of radiation, but also by macrophages (10, 55). In tissue samples, swelling, extravasation, the accumulation of inflammatory cells and signs of thrombosis in capillaries can be observed (56). In the skin, this can manifest as redness and oedema (56). The second phase, also known as the 'latent phase', is characterised by endothelial damage of the capillaries (56). The capillaries are narrowed and thrombosed, and these changes lead to rarefaction of the capillaries and to reduced capillary/muscle ratio (56).

Clinically significant late changes in healthy tissues are caused by fibrosis. The rarefaction of the capillaries with subsequent perfusion defects is partially responsible for fibrosis, but apparently, fibrosis is also caused by a fibrotic cascade that is launched at the time of radiation (55, 56). The fibrotic cascade is a complex process with multiple mediators, and it is not fully understood. Oxidative stress is exacerbated by tissue hypoxia, and it propagates inflammation (10, 55). The transformation of fibroblast into collagen-secreting myofibroblasts seems to be central to the fibrotic process (57). The transformation is enhanced by pro-fibrotic cytokines, matricellular signals and epigenetic reprogramming (10). Pro-fibrotic cytokines, such as transforming growth factor-beta (TGF-β) and interleukins 13 and 4, are secreted by neutrophils (10). TGF-β induces the release of matricellular signals (e.g. CTGF), which promote fibroblast differentiation into myofibroblasts (10, 55, 57). Finally, there are studies suggesting that radiation induces epigenetic reprogramming via DNA methylation (10). Myofibroblasts with hypermethylated genes have decreased rates of apoptosis. In normal wound healing, myofibroblasts undergo apoptosis, which results in an acellular scar. Persisting myofibroblasts are considered to promote fibrosis (55). Once initiated, the fibrotic process seems to continue with increasing amounts of tissue changes over time (56).
2.3 Radiotherapy-induced heart disease

2.3.1 Prevalence and clinical characteristics of RIHD

Data regarding long-term cardiovascular events after radiation have been collected from survivors after therapeutic, accidental or malicious radiation exposure. Therapeutic radiation increases the incidence of adverse cardiac events (Table 1). Significant cardiac exposure occurs when chest RT is administered to patients with lymphoma, breast cancer (especially left-sided breast cancer), oesophageal cancer and, to a lesser extend, to patients with thymoma and lung cancer. The long-term follow-up of these patient groups show that each Gy of the mean heart dose increases the risk for RIHD by 4% and coronary events by 7.4% (58, 59). The survivors of the atomic bombs at Hiroshima and Nagasaki have been followed-up for more than 50 years. These data showed that each Gy of radiation exposure increased cardiovascular risk by 14%, and that the dose-response curve is linear, meaning that even low doses (0.5-2 Gy) increased the risk with no apparent safe threshold (60). In patients with Hodgkin’s lymphoma, the incidence of RIHD is 10-30% in 10 years and up to 50% in 40 years after treatment (4, 8). Frandsen et al followed-up a large patient population that was treated with RT for oesophagus cancer, which involved high cardiac radiation doses. The excess cardiovascular mortality started to increase already 8 months after RT. The absolute increased risk for cardiac mortality in these patients was 3%, 5% and 9% at 5, 10 and 20 years after RT treatment, respectively (61). Breast cancer roughly doubles the risk for RIHD (11, 62), and hazard ratios for myocardial infarction have been estimated to be 2.66 after median follow-up time of 18 years after RT, for congestive heart failure, it is 1.85, and for valvular dysfunction, it is 3.17 (63).
Table 1. Summary of the early and late RT-induced cardiac changes

<table>
<thead>
<tr>
<th></th>
<th>Early changes (days to months)</th>
<th>Late changes (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pericardium</td>
<td>Acute pericarditis</td>
<td>Chronic pericarditis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Constriction</td>
</tr>
<tr>
<td></td>
<td>After high dose RT exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Usually self-limited</td>
<td></td>
</tr>
<tr>
<td>Coronary arteries</td>
<td>None</td>
<td>Coronary artery disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May be silent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increases RIHD-related mortality</td>
</tr>
<tr>
<td>Valves</td>
<td>None</td>
<td>Mitral and aortic valve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regurgitation 10 years after RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stenosis 20 years after RT</td>
</tr>
<tr>
<td>Myocardium</td>
<td>Capillary rarefaction</td>
<td>Diastolic heart failure</td>
</tr>
<tr>
<td></td>
<td>Changes in diastolic function</td>
<td>Restrictive cardiomyopathy</td>
</tr>
<tr>
<td></td>
<td>Decline in GLS and local STE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>analysis</td>
<td></td>
</tr>
<tr>
<td>Heart rhythm and conduction system</td>
<td>ECG changes in 13-45%</td>
<td>Autonomic nervous system changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sick sinus syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased risk of pacemaker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Different types of arrhythmia</td>
</tr>
</tbody>
</table>

RT, radiotherapy; RIHD, radiotherapy-induced heart disease; GLS, global longitudinal strain; STE, speckle tracking echocardiography; ECG, electrocardiogram.

2.3.1.1 RT-induced pericardial changes

Pericardial manifestations induced by RT are highly dose-dependent (10, 64). High-dose regimes increase the hazard ratio of pericardial complication by 2.8 to 8.3-fold (65). The early RT-induced pericarditis occurring during the treatment or within days to weeks after a very high dose of radiation is nowadays a rare complication (10). The symptoms of early RT-induced pericarditis in the modern era are mild and usually self-limited (8). Their presence, however, indicates that the risk for the development of late chronic pericarditis or pericardial constriction is increased (4, 10, 66). With refinements in RT shielding and dosimetrics, the incidence of chronic symptomatic pericarditis has declined...
from 20% to 2.5% since the 1970s (4, 10). The median onset of the symptoms of chronic RT-induced pericarditis is one year, ranging from three months to a decade (10). Pericardial thickening is a frequent finding after chest RT, and in nearly 20% of these patients, pericardial thickening becomes severe enough to cause constriction (8, 10, 67, 68). It has been estimated that in 9-31% of the patients with symptomatic constriction, the cause of the pericardial pathology is previous chest RT (69). A special form of constriction, effusive-constrictive pericarditis, characterised by fibrotic fusion of the visceral and parietal pericardial layers and as well as tense effusions in the free pericardial space, is often related to RT (4).

The treatment of acute RT-induced pericarditis complies with the general recommendations. Anti-inflammatory medication is used in symptomatic cases, and pericardial drainage is used in case of tamponade with compromised haemodynamics (10, 69). Pericardial constriction is a complex entity that usually has simultaneous myocardial involvement. Pericardiectomy is the treatment of choice, but due to technical difficulties and other concomitant RT-induced cardiac lesions, perioperative mortality is reported to be as high as 21%, and 5 and 7-year survival is as low as 55% and 27%, respectively (10, 70).
2.3.1.2 RT-induced coronary changes

Coronary lesions secondary to RT are the major cause of increased RIHD-related cardiac mortality (4, 9). Even a relatively low mean heart radiation dose can cause coronary lesions. In the study by Darby et al, a mean heart dose of < 2 Gy, 2-4 Gy, 5-9 Gy and > 10 Gy imposed an excess risk for coronary artery disease (CAD) of 10%, 30%, 40% and 116%, respectively (59). RT leads to an increased incidence of CAD within 5 years post-treatment, and it continues to increase for at least 20 years (8, 59, 65). The lesions are in close proximity to RT fields and preferentially occur in the proximal parts of the left anterior descending coronary artery (LAD) in patients who have received breast cancer RT and in the left main coronary artery, the circumflex coronary artery or in the right coronary artery in patients who have received RT for lymphoma (8, 71).

Histologically the RT-induced coronary lesions are more fibrous than other atherosclerotic lesions (4, 68, 72). In addition, the lesions tend to be longer, more friable and more often ostially located (4, 10, 72). Simultaneous RT-induced changes in the autonomic nervous system seem to increase the incidence of silent CAD (8). Reduced exercise capacity, atypical symptoms and diagnostic difficulties due to absence of traditional risk factors may cause significant diagnostic delays (70). Therefore, screening for silent ischemia 5 to 10 years after RT has been suggested (8, 11, 70). The treatment for RT-induced CAD does not deviate from general guidelines. The complex anatomy of the lesions might pose a challenge for percutaneous interventions. There have been reports of increased rates of restenosis with earlier protocols, while reports of the treatment strategies currently employd, show no difference between irradiated and non-irradiated patients after stenting with the drug-eluting stent (73, 74). Surgical revascularisation can be complicated by concomitant fibrotic damage in the lungs, skin, mediastinum and pericardium (8, 75). In addition, the RT-induced vascular lesions in the mammarian arteries might reduce their usability as grafts, and aortic calcification might be a contraindication for surgery (10, 76). The operative mortality of coronary artery bypass grafting (GABG) in post-RT patients is 7% (77). Long-term survival depends on radiation exposure. At 4 years, patients with previous breast cancer RT had a survival rate of 80%, close to general population, while patients with previous RT for Hodgkins lymphoma had 57% survival (76).
2.3.1.3 RT-induced valvular changes

Figure 3. Radiotherapy-induced valvular changes. A lady with RT for left-sided breast cancer 31 years earlier had been followed-up for the heavily calcified stenosis in aortic and mitral valves (arrows). A preoperative coronary angiography revealed a significant proximal left circumflex coronary artery lesion. In surgery, aortic and mitral valves were replaced by biological artificial valves, and a coronary by-pass grafting (GABG) to the stenosed coronary artery was performed. In addition, a dual-chamber pacemaker was implanted prior to the operation due to episodes of syncope and a complete atrio-ventricular block on ECG. Reprinted with permission from Duodecim ltd [Duodecim] (Tuobinen S. et al 2015), copyright (2015).

Valvular lesions after RT are common. Depending on the radiation dose, valvular dysfunction can be detected in 32% to 55% of patients with previous lymphoma within 6 to 20 years after RT (78-84). Clinically significant valvular disease is observed in 4-25% of the RT-treated patients 13 to 22 years after the treatment, and the incidence seems to rise significantly 15 years after treatment (8, 84, 85). In patients who received lower cardiac doses, the absolute risk for significant valvular lesions is markedly lower, 1.4%
30 years after RT (83). Van der Pal and co-workers found a dose-assosiation with increased risk by 1.33 per 10 Gy, and Bijl et al found a time-association with 1.3-fold increase of risk for aortic regurgitation per each year after RT (84, 85). Fibrotic retraction of the valvular apparatus occurs within 10 years and thickening and calcifications of the valve appears 20 years after RT (4, 10, 86). Fibrosis and accumulation of calsification induce stenosis, but regurgitations are even more common (10, 85). The mitral and aortic valves are more commonly affected than the pulmonary and tricuspid valves, probably due to altered aortic elasticity and higher haemodynamic demands on the left side (4, 10, 85). The need for valvular surgery in Hodgkin’s lymphoma patients was 9.16-fold higher than in general population (87). Six years post-RT, the hazard ratio was 3.5 to 8.6 after high-dose treatment for childhood cancers (65).

Mitral and tricuspid valve replacement might be better than valve repair in patients who have previously undergone chest RT. Crestellano et al reported a 32% incidence rate of valvular dysfunction at three years after mitral or tricuspid valve repair in patients with previous mediastinal RT. It was speculated that the fibrotic process was not halted by the surgery and that this was one of the reasons leading to repair failure (75). Due to increased surgical risk, transcutaneous aortic valve implantation (TAVI) could be a better alternative for patients with severe aortic stenosis with previous chest RT. TAVI has been successfully implanted in patients with history of chest RT. In the current Cardio-oncology position paper by European Society of Cardiology it was stated that TAVI might be a suitable option for this patient group (8, 88).

2.3.1.4 RT-induced myocardial changes

Clinically significant myocardial changes after RT usually manifest 5 years after the treatment (89). RT-related severe CAD or significant valvular changes can induce changes in systolic function, but RT-induced cardiomyopathy in its classic form is caused by increased fibrosis in the myocardium (4). The rarefaction of the myocardial capillaries in the irradiated areas is an early phenomenon, and perfusion defects can already be detected at six months after RT (90). At the later follow-ups, the perfusion defects persist or increase (91-95). In addition to the capillary changes, diffuse, patchy interstitial fibrosis accumulates (58). These changes lead to thicker and stiffer tissue as well as diastolic dysfunction and restrictive cardiomyopathy in extreme cases. Chest RT increases the risk for heart failure upto 7-fold (4, 65). The medical treatment of the RT-induced cardiomyophathy complies with the general guidelines for heart failure. Specific drugs for the treatment of RT-induced inflammation or fibrosis are not yet available
The survival of patients with RT-induced heart failure after heart transplantation has been reported to be lower than for patients with other etiology in some studies, but not in all studies (96, 97). Even asymptomatic RT-induced myocardial changes can reduce cardiac tolerance for other stress factors (4). Poorer post-operative results after CABG or pericardiectomy in post-irradiated patients are partially due to RT-induced myocardial fibrosis (10, 76, 77).

2.3.1.5 RT-induced changes in heart rhythm and the conduction system

All kinds of bradycardia and tachycardia can occur after RT due to changes in the autonomic nervous system (ANS) and RT-induced fibrosis in the sinus node and conduction system (4, 8, 70, 82). As a result of the changes in the ANS, the heart rate increases and its variability gets blunted, heart rate recovery after exercise is abnormal and perception to CAD-associated pain is diminished (4, 8, 82, 98). ECG abnormalities have been reported in 50-75% of the Hodgkin lymphoma patients after mediastinal RT (82, 99, 100). Right bundle branch block is the most common RT-induced intraventricular conduction disturbance (4, 70, 82). Slama et al and Orzan et al have reported small series of patients who developed third-degree atrio-ventricular heart block 12-20 years after RT (67, 68). The need for pacemaker therapy is increased by 1.9-fold in patients previously treated with chest RT vs general population (87). Furthermore, patients who have previously undergone RT for Hodgkin’s disease have a two-fold risk of needing post-operative pacemaker after cardiac surgery (4). Ventricular ectopic beats secondary to fibrotic changes have been reported in up to 50% of patients after chest RT (4). Additionally, prolongation of the QT-time and an increased incidence of sick sinus syndrome have been reported after chest RT (70).

2.3.1.6 RT-induced extracardiac changes in the chest

RT-induced changes in the lungs, arteries, skin and thyroid can induce symptoms that are similar to cardiac diseases, and even more importantly, they can complicate the interventions of RT-induced cardiac manifestations. Pulmonary and cutaneous changes display similar time-dependent development as cardiac manifestations. Breast cancer RT induces pneumonitis in 1-5% of the patients (101). Pneumonitis subsides within 1-3 months with oral corticosteroid treatment, but often precedes irreversible lung fibrosis (102). Cutaneous changes are experienced by the majority of patients in the initial phase, and 10-27% develop grade I to II fibrosis later on (103, 104). RT seems to increase arterial lesions (105). Isolated carotid or subclavian artery stenosis, which is not
commonly seen in other patient populations, has been found in up to 40% of patients with previous RT for Hodgkin’s lymphoma (70). The internal mammalian arteries may be friable or scarred, and cannot be used as coronary grafts in half of the post-irradiated patients (76). In cases where the RT fields reach the thyroidea gland, the risk of late hypothyreosis is significant (106). In addition, the risk of secondary malignancies is increased by 1.2-fold after breast cancer RT (107).

![Figure 4. Radiotherapy-induced vascular changes in a man who underwent high-dose chest radiotherapy four decades earlier. On the left side, a severe subclavian stenosis is illustrated (A). This patient had undergone a CABG surgery five years previously, and he was re-examined for chest pain provoked by the use of his left arm. The use of the left arm induced steal from the coronaries via left mammarian graft. A stenting of the stenotic subclavian artery was performed. The native left coronary is shown in panel B. On the right side, the sclerotic aorta of this patient is illustrated (C). Courtesy from Juha Virolainen and Miia Holmström.](image-url)
These extracardiac changes must be taken into account when treating patient with cardiac problems. Surgery can be complicated by mediastinal and skin fibrosis. Aortic calcification poses a risk for thrombotic embolisation and can restrict technical options during the operation. Changes in mammarian arteries can reduce their usability as grafts (4, 76, 108). Furthermore, pulmonary changes can increase operative risk. The risk for poor wound healing and post-operative infections is increased by skin fibrosis and reduced perfusion due to arterial changes (76).

2.3.1.7 Progression of the RT-induced cardiac changes

The progression of the RT-induced cardiac changes has been documented in several prospective studies as well as in cross-sectional surveys (4, 11, 57, 86, 109-111). Prosnitz et al showed that the initial myocardial perfusion defects persist and even increase in six-year follow-up study (91). The absolute excess risk of angina pectoris increases with longer follow-up time from 5.5 to 59.9 per 100 000 patient years from 10 to 20 years after RT (110). The incidence of CAD, heart failure and changes in the ANS also increases with longer follow-up times (63, 98, 112). Also, the incidence of valvular lesions rose by 56% in eight years in a prospective follow-up study by Cutter et al (83). Bijl and co-workers determined an odds ratio of 1.13 for aortic regurgitation per year after RT-treatment (85). The overall risk for cardiac events rises with longer observation times (65, 111), and the absolute risk for cardiac mortality increases from 5% to 54% from 5 to 20 years after RT (4, 17, 113, 114).
2.3.2 Factors predisposing to RIHD

The most important factors that affect RT effects in the heart are the volume of the heart that is exposed to radiation and the cardiac radiation dose (4, 8, 11, 63, 64, 84, 111). The overall risk for RIHD seems to be dose-dependent as each Gy imposes a 4-7.4% increase in risk with no apparent safe threshold (58-60).

Concurrent treatment and patient specific factors influence individual susceptibility to the adverse cardiac effects. The prior or simultaneous use of anthracyclines, trastutsumab or other cardiotoxic regimes increases the radiation toxicity in tissues and potentiates the adverse RT-induced effects (4, 8, 63). Furthermore, the oxygen level in the tissues plays an important role. Hypoxic tissues are radiation resistant, and hypoxic condition reduce cardiac damage (115, 116).

The conventional risk factors for cardiovascular disease impose an additive risk for patients receiving RT (10). High bloodpressure predisposes to left ventricle (LV) dysfunction, occult CAD or valvular dysfunction with an odd ratio of 3.0 (117). Additionally, Harris et al showed an increased risk of CAD in hypertensive patients who have previously received RT (112). High cholesterol, especially at the time of RT, increases the risk of atherosclerosis and valvular changes (56, 83, 94, 105, 118, 119). Furthermore, pre-existing diabetes increases the risk of major coronary events by 3.23-fold and obesity by 1.57-fold (59). Smoking predisposes to the development of coronary artery lesions, and it has a more than additive effect in combination with RT (59, 63, 120). All in all, traditional risk factors roughly double the relative risk of RIHD, and their aggressive management is of paramount importance to reduce excess cardiac risk produced by radiation (10).

Genetic factors influence patients’ vulnerability to RT effects. A genetic defect in DNA repair, such as in ataxia-telangiectasia, Fanconi Anemia and Nijmegen syndrome, carries a high risk for severe RT adverse effects with lethal reactions observed following a dose as low as 3 Gy (42). Over 80% of the differences in RT-induced changes in tissues cannot be explained by known factors, and a genetic variation is thought to explain a part of this (6). Genetic factors leading to disturbance in fibrogenesis, oxidative stress and enthotelial function seem to affect patients’ reaction to RT. In particular, TGF β1 T/T variant seems to increase the risk for RIHD by 1.79 (121). Currently, genetic tests are not available to characterise patients’ genetic susceptibility for RIHD (6). Theoretically,
such knowledge could be used to modify individual RT-protocol in the future – taking into account the sensitivity of both cancer and healthy tissue to radiation (6).

2.3.3 Prevention and treatment of RIHD

Prevention of RIHD includes methods to reduce cardiac exposure to radiation and to optimise concomitant cancer treatment as well as other patient derived risk factors for RIHD. (10). However, specific options to ameliorate RT-induced changes are limited. The treatment of cardiac diseases does not deviate from other patients, except for the limitations and considerations mentioned in the chapters featuring the RT-induced cardiac changes (2.3.1.1 -2.3.1.5).

Prevention. The cardiac radiation exposure is the most important factor affecting adverse cardiac effects. Hence, actions to minimise cardiac dose are the most important means to reduce RT-induced cardiac damage. The radiation dose can be reduced by specific treatment protocols. RT given in multiple fractions has different effects on the healthy tissue and on the cancer tissue (45). 3D treatment planning based on CT images is routinely used to maximise the effect of RT on the cancer tissues and to minimise healthy tissue burden. In IMRT, the treatment fields affecting both healthy and cancer tissue are delivered with reduced radiation doses. In contrast, fields affecting cancer tissue only will be treated with higher doses (45). Deep inspiratory breath hold (DIBH) or respiratory gating creates a greater distance between the heart and breast cancer tissue. In a study by Smyth et al, DIBH induced a mean cardiac dose reduction of 3.4 Gy, which corresponds to 13.6% reduction in RIHD risk (47).

The position of the patient during the RT treatment also plays a role. In breast cancer patients, a supine position reduces cardiac doses by 85% compared to prone position (46). In other studies, the supine position resulted in even greater LAD exposure because of the more anterior position of the heart (122). An elevated ortolateral arm reduces cardiac radiation doses in patients with left-sided breast cancer.

With the modern techniques, the current cardiac radiation doses for left-sided breast cancer are estimated to be 4.2 Gy, and tangential fields with DIBH delivers a mean heart dose of 0.4-2.5 Gy. The average mean heart dose for patients with right-sided breast cancer was 3.3 Gy (123). The cardiac morbidity and mortality after breast cancer RT has decreased (17, 120). In addition, dose reductions in overall chest RT has resulted in decrease in absolute cardiac mortality from 13% to 5.8% since the 1970s (17). Despite
adopting these methods, cardiac exposure is unavoidable and other considerations for the prevention, detection, follow-up and treatment should be applied (57).

As mentioned in chapter 2.3.2, the conventional risk factors for cardiovascular diseases increase the risk for adverse effects secondary to RT. It has been proposed that they should be actively addressed and aggressively treated prior to cancer treatment (11). This includes lifestyle counselling for obesity and sedentary habits, smoking refrainment, and adequate medication for high blood pressure, dyslipidemia and diabetes. It has been suggested that these patients should have a life-long screening of cholesterol and blood pressure levels (10).

Anticancer medication can have direct adverse cardiac effects and potentiate RT-induced damage. Anthracycline-based therapies along with chest RT is the best known combination that exhibits such an additive effect (8). Patients receiving such therapies could be considered for more thorough follow-ups. Patients with several cardiovascular risk factors or reduced LV function at the baseline might be considered for specific cardioprotection with angiotensin converting enzyme inhibitors (ACE) or angiotensin receptor blockers (ARBs) and betablockers as well as for modifications of the chemotherapy treatment (8). Similar considerations should be made with other concurrent cancer treatments with special attention to compounds with known sensitising effects towards radiation.

Specific treatment. Hyperbaric oxygen therapy and amifostine are used to mitigate the RT-induced adverse effects. Hyperbaric oxygen has been used to treat radiation necrosis and has a success rate of 94-100% in the jaws, 76% in cutaneous wounds, 82% in laryngeal radioneurosis, 86% in cystitis, and 63% of the gastrointestinal radioneurosis (124). The regrowth of the vessels stimulated by hyperbaric oxygen has been suggested as the mechanism behind the treatment effect (57). Amifostine, an antioxidant, is used to treat radiation-induced dryness of mouth, also known as xerostomia (10).

There is flourishing research in order to find different means to alter the radiation-induced cascades and tissue changes. The different agents tested target the mechanisms involved in radiation initiated processes – enhanced fibrotic activity, oxicative stress, and different mediators of the fibrotic cascade (55). RT-induced enteropathy and kidney damage have been treated with the inhibition of platelet aggregation by clopidogrel and acetylsalicly acid (125-127). Clopidogrel reduced the initial enteropathy changes, but it did not reduce the late effects (125), whereas acetylsalicly acid seemed to protect the
kidneys of mice in 12-month follow-up (127). Different antioxidants have been tested to reduce the effects of oxidative reactions. Aminofistine has been approved for the treatment of xerostomia (10). Combined therapy with pentoxifylline and vitamin E has been tested for the treatment of superficial fibrosis in breast cancer patients. The results are conflicting (128, 129). In addition, there have been promising experimental reports on several agents. Alpha-lipoic acid decreases the local levels of interleukin 1, interleukin 6, metalloproteinases and enteritis in mice (130). Melatonin reduces post-RT levels of interleukin 1, tumour necrosis factor alfa (TNF-α), TGF-β together with milder lung changes (131). Furthermore, high-dose selenium seems to effectively abate nephropathy changes in the rats after high-dose total body radiation (132).

The studies of statins and ACE/ARBs are perhaps the most interesting ones. Several acute and chronic radiation-induced pro-inflammatory and pro-fibrotic responses are reduced by pravastatin, lovastatin and atorvastatin in studies utilising explanted human tissues (133-136). Furthermore, in the rat model, pravastatin at physiologically relevant doses improved radiation-induced enteropathy changes (133, 134). One rodent model has shown reduced levels of fibrosis mediators and cardiac fibrosis following atorvastatin treatment (137). Treatment with ACE/ARBs seems to protect from RT-induced tissue changes. Captopril has been the most often used ACE to study radiation tissue effects, but ramipril, enalapril, losartan and fosinopril have also been utilized (138-141). In animal studies, these agents have ameliorated effects in the lungs (138, 139, 142-144), bowel (145), kidneys (146, 147), neurons and brain (141, 148), skin (149) and heart (150, 151). The effects have been dose-dependent (142, 143, 146), and the use of ACE/ARBs has been effective even when administered 1-2 weeks after RT (138, 147, 152). In histologic samples, reduced proliferation of fibroblasts (142), halted capillary damage (146, 151), abated fibrosis (150, 151) and decreased levels of collagen deposits (139, 143, 144, 146) compared to radiated controls without medical treatment, has been observed. Despite these studies demonstrating the potential benefits of ACE/ARBs, no randomised clinical trials in humans on the use of these agents in prevention of RIHD currently exist.
2.4 Detection of early cardiac changes after modern conformal RT

The clinically significant RT-induced lesions appear after several years of latency. Early subclinical changes precede the late sequel. The potential clinical significance of the early changes as a marker of increased risk for evolution toward RIHD has induced vast scientific activity in this field. The central findings of these studies are presented in the following chapters (2.4.1 – 2.4.5).

2.4.1 Echocardiography

2.4.1.1 Conventional echocardiography

Conventional echocardiography has been used for the detection of RT-induced changes in several cross-sectional retrospective studies as well as in prospective studies. Most of them have indicated that RT has an adverse effect on LV diastolic function. Several investigators have reported a significant decrease in LV dimensions in average 17 to 20 years after mediastinal RT for lymphoma (80, 82). Retrospective studies have shown lower septal e’, higher E/e’ ratio, lower E/A ratio or longer isovolumetric relaxation time (IVRT) and mitral inflow declaration time (dt), and greater levels of diastolic dysfunction 13 to 23 years after chest RT with correlation to greater radiation doses and longer follow-up times (76, 80, 81, 153-156). However, the findings in Christiansen’s reports are undermined by the fact that the patients in the RT group were significantly older than the patients in the control group (80). In some prospective studies, similar diastolic findings have been discovered (156, 157), with a recovery in half of the patients during a 6-month follow-up (157), while in others, no significant changes could be identified within a 14-month follow-up nor 13-year retrospective studies (85, 158, 159).

2.4.1.2 Myocardial deformation imaging

RT-induced changes in myocardial strain have been studied both with tissue Doppler imaging and with speckle tracking echocardiography (STE) (154, 158). Early changes and late alterations have been identified. In prospective studies, a decline in global strain persisted six weeks to 14 months (158-160). Regional analysis has shown decline in strain corresponding to the anterior and apical radiation fields (158, 159, 161). A dose response has been found on a regional and global level (158, 160). In some reports, the deterioration of the strain values has been transient (161), but retrospective long-term studies show a global longitudinal strain (GLS) decline in patients exposed to RT
treatment years to decades earlier (153, 154, 162). The decline of the strain values was considered significant due to its ability to detect early changes in systolic function and due to its prognostic power (154).

2.4.2 Myocardial perfusion imaging

In modern perfusion studies with single photon emission computed tomography (SPECT), RT induced constant or reversible perfusion defects in 37-71% of the patients with left-sided breast cancer and in 17-44% in patients with right-sided breast cancer (92, 93, 95, 163-165). On the other hand, in a study by Chung et al in patients with low mean cardiac exposure, perfusion defects were not detected (166). The perfusion defects were located in the apical and anterior parts of the LV that corresponded to the RT fields in patients with left-sided breast cancer and in the antero-inferior fields in patients with oesophageal cancer (92-95, 167). The most important factor influencing the perfusion defects was the volume of the heart in the radiation field (90, 91, 94, 167). In the study by Hardenbergh and co-workers, the magnitude of the defect was dose-dependent (92). Regional disturbances in systolic contraction and chest pain episodes have been associated with perfusion defects in some studies (90, 165), though the findings have been silent in others (93, 163). In the study by Prosnitz et al, the initial defects persist in the same location in six-years follow-up in 80% of the patients, and additional new perfusion defects during the six-year follow-up period increased the percentage of affected patients from 50-60% to 52-71% (91).

2.4.3 Cardiac magnetic resonance imaging

Radiation-induced cardiac changes in cardiac magnetic resonance imaging (CMR) of patients with breast cancer or childhood Hodgkin’s disease revealed a transient decline in LV ejection fraction (LVEF), but not late gadolinium enhancement (LGE) indicating focal fibrosis at two to eight years after RT (161, 168). In patients who underwent curative RT for esophageal cancer, the cardiac radiation doses were significantly higher. Two years after RT treatment, these patients showed LGE in 21% of the segments that received 60 Gy or more and in 15% of the segments that received 40 to 60 Gy dose. The LGE was mid-myocardial in most of the patients (169). CMR performed twenty years after RT for Hodgkin’s disease revealed abnormalities in 70% of the patients (79). LGE with subendocardial and transmural distribution was observed in 26% of the patients. LVEF was reduced in 23% of the patients, and significant valvular changes were observed in 42% of the patients. Perfusion defects at rest were observed in 61% of the
patients, and perfusion defects during stress were observed in 68% of the patients. Finally, in a work reporting early RT-induced regional changes in myocardial metabolism showed LGE in two out of eight patients with increased metabolism (170).

2.4.4 Positron emission tomography

Studies with positron emission tomography (PET) show increased metabolism in radiated myocardial area three months after irradiation. In an animal trial involving 12 beagles, the radiated areas with increased metabolism showed perivascular fibrosis and vacuolisation of the mitochondria in histological samples compared to the non-irradiated areas without increased metabolism (171). In a work by Jingu et al, 20% of oesophageal cancer patients showed increased fluorodeoxyglucose (FDG) uptake in radiation-exposed areas three months after chemoradiotherapy, and LGE was detected by CMR in two patients out of eight in the areas of increased FDG uptake (170).

2.4.5 Exercise testing

Post-irradiation exercise testing has been studied by Heidenreidh, Chen and Groarke (98, 117, 155). Occult ischaemia was detected by ECG in 11-23% of the patients after a 15-year follow-up (155), and in 46% after 19-year follow-up (117). In addition, RT-induced changes in ANS was associated with reduced exercise capacity, and in 30% of the patients, there was a low peak oxygen consumption level (82, 98). Exercise-induced ischaemia, changes in ANS and reduced exercise capacity were associated with increased mortality in 3-year follow-up (98, 155).

2.4.6 ECG

RT induces changes in ECG in 13-45% of the patients (172-174). The most common changes include ST-segment and T-wave alterations and poor R-wave progression (173-175), while Dogan and co-workers reported prolonged corrected QT-time without other accompanying changes after RT (156). The ECG changes seem to appear very early after RT and to increase in prevalence up to 6 months (173). Mean heart dose over 20 Gy, hypertension, RT for left-sided breast cancer and the use of tamoxifen increase the prevalence of these changes (172, 173). At one year, 27% of the initial changes persist and in 37% of breast cancer patients, a new fragmentation of the QRS-complex appears (172, 175, 176). Hypertension has been associated with irreversible changes during the first year of follow-up (172). Strender et al reported a decreased incidence of anterior T-
wave inversions from 61% at 6 months to 25% at 10 years and an increase of ST-abnormalities from 14% to 22% in patients with left-sided breast cancer, respectively, and concluded with a minor clinical significance of the initial ECG-changes (174).

2.4.7 Cardiac biomarkers

RT seems to induce a rise of both troponins and pro-B-type natriuretic peptide (proBNP/BNP) (159, 177-180). The rise of troponins is higher in patients with left-sided breast cancer compared with patients with right-sided breast cancer, and it is associated with RT doses and concomitant changes in echocardiography (159, 177). The rise in proBNP/BNP is also associated with the RT dose (178, 181). Furthermore, alterations of the myocardial metabolism have been detected in the areas prone to RT, and they have been associated with significant BNP rise (179). The rise of troponins and proBNP signals a cardiac impact and is associated with a poor prognosis over a wide variety of cardiac pathologies, in patients with non-cardiac diagnosis and even in community screening (182-189). Therefore, a rise in these biomarkers has been considered as a clinically significant when detected after RT.
2.5 Advanced echocardiography

2.5.1 Integrated backscatter

Myocardial acoustic properties can be characterised non-invasively by integrated backscatter (IBS) measurements. In the myocardium, the ultrasound beam is scattered by objects smaller than ultrasound wavelength (190). A part of the scattered signals is directed back to the ultrasound probe, which is referred as the backscattered signal (191). The IBS signal of the myocardium varies throughout the cardiac cycle. There are two types of measurements, the calibrated integrated backscatter (cIBS) and the cyclic variation of the integrated backscatter (CVIBS) (192). The cIBS value is measured at one time-point, usually at the end-diastole (191, 193-195), while the CVIBS presents the total variability of the signal intensity (196, 197). The cIBS is considered to measure myocardial texture properties, while CVIBS reflects the intrinsic myocardial contractility (198).

The first attempts to measure myocardial acoustic properties were made in the late 1970s (199). Prototype ultrasound machines measured objects immersed in liquid with complex multistep processing (199-202). Next, radiofrequency ultrasound signals were amplified and displayed on oscilloscopes, recorded on Polaroid films and then analysed (200, 202). Later in the 1980s processed M-mode acquisitions were used in IBS analysis (198, 203-205). Two-dimensional greyscale echocardiography replaced the previous methods in the 1990s (193, 195, 197, 201, 206-210). Currently, ordinary commercial echocardiography machines can be used instead of specific equipment, and digital raw data has replaced data stored in video signals (191, 192, 211-213).

The use of IBS has been limited to research only, probably due to several reasons. First, the method has been considered difficult and prone to artefacts (192, 199). Especially during the era when video signals were used, the non-linear effect of different gain settings was problematic, and the first attempts were sensitive to noise (192). In addition, the measurements are affected by specular reflections of the tissue border, bright reflections and myocardial fiber direction (192). Additionally, single myocardial measurements are affected by ultrasound power, and to be comparable with other measurements, it needs to be calibrated with acoustic stable objects. Such objects can be LV cavity, pericardium or a phantom (191, 192, 206, 207, 212-214). Second, a plethora of different kinds of measurements in the previous decades made the direct comparison of the results difficult. The earliest studies used millivolts (193, 199, 203, 207), while most
of the studies later utilised desibels (dB) (200-202). Tissue reflectivity has been described as a percentage (IB%, normalized IB or correction/attenuation coefficient of the IBS) compared to a reference object (193, 195, 199-201, 203, 207, 208, 214, 215). Others have used the mean value of the IBS signal (mIBS) or transmural gradient (216), while in the modern studies a reference value is subtracted from the measurement value to calculate the cIBS (191, 209-213). The dynamic nature of the IBS has been measured with different time-intervals, their relative percentage or as a total difference of the maximal and the minimal values (197, 198, 204-206, 214, 215, 217-223).

On the other hand, a cheap, widely available and non-invasive method for tissue characterisation is appealing. In a work by Sagar et al, IBS values were stable under different haemodynamic conditions, changes in puls, preload and afterload, which increase the reliability of these values (224). Furthermore, the validation in the recent years show that the intraobserver variability for cIBS varies from 0.4 dB to 2.2 dB, or 2.5 – 4.9 % (206, 215, 220). The interobserver variability for cIBS values has been 1.1 - 6.5 % (206, 213). The intraobserver variability values for CVIBS varies from 0.3 dB to 0.6 dB, or 3.6 – 5.4 % (191, 197, 206, 215, 220, 223, 225). The interobserver variability of the CVIBS values is 0.6 to 1.1 dB or 3.8 – 8.0% (191, 197, 206, 220, 223, 225). These results give a more solid ground for assessment of the measured results and confirm their comparability.

2.5.1.1 Calibrated integrated backscatter

The cIBS measurement is considered to reflect the myocardial properties. In the early era, studies of hearts with infarction or cardiomyopathy showed a correlation between myocardial scar tissue, especially collagen content, and a higher tissue reflectivity (200, 201, 203, 226). However, perioperative cardiac biopsies were taken from patients undergoing CABG in a work by Prior et al. These patients had a low percentage of fibrosis (0.7-4.0%), and there was no correlation between the histological sample and the cIBS measurements (211). Even though the different locations of the histological sample and the cIBS measurements undermine the results of this study, it seems that while evaluating the replacement fibrosis, the collagen content is the principal contributor to tissue reflectivity, whereas in myocardium with diffuse fibrosis or normal structure, other factors dominate (202, 211). This is also evident considering the reversibility of the cIBS measurements. In patients with acute myocardial infarction or allograft rejection, a transient increase of the tissue reflectivity was observed (194, 227). Additionally, an effective treatment for thyroid dysfunction, overweight or kidney
function has been shown to decrease tissue reflectivity (214, 228, 229). Furthermore, postmenopausal replacement therapy with oestrogen or raloxifen seems to reduce tissue reflectivity and to improve diastolic function (225). Since a scar tissue is unlikely to vary, other factors obviously affect the measurements of tissue reflectivity.

Myocardial water content, the size of the cells and fibre orientation as well as their 3D arrangement has been suggested to contribute to the myocardial reflectivity (211). A difference in myocardial reflectivity was detected between hypertrophied myocardium of patients with hypertension and that of patients with hypertrophic cardiomyopathy. Likewise, a difference was detected in the myocardium with normal thickness of the patients with hypertrophic cardiomyopathy and normal controls (207, 216). The difference in an otherwise similar phenotype suggests that the disarray of the fibre orientation in patients with hypertrophied cardiomyopathy might contribute to the increased cIBS value. Furthermore, increased tissue contents of copper and iron seemed to increase myocardial tissue reflectivity (195, 215). In Wilson’s disease, intracellular copper accumulation induces multiorgan changes along with cardiomyopathy changes (215). Eighteen patients with Wilson’s disease were evaluated by echocardiography in a study by Arat et al. Otherwise normal appearing hearts had increased values of cIBS compared to controls (215). Likewise, in a study by Lattanzi et al., thalassemia patients with repeated transfusions and iatrogenic iron overload showed higher tissue reflectivity (195). Early subclinical changes have also been observed in patients with hypertension, diabetes, hypothyreosis, Kawasaki disease and Becher’s muscular hypertrophy, though not all studies support these findings (206, 208, 209, 214, 216). Accumulation of water and different kinds of extracellular material have been suggested to modulate to the myocardial reflectivity in these patient groups without other overt cardiac changes. In addition, increased myocardial reflectivity has been associated with changes in diastology (210, 213).

Increased myocardial reflectivity seems to predict adverse changes in myocardial function later on. In patients with Becher’s muscular hypertrophy, an increased cIBS value was an independent predictor of LV dysfunction in a two-year follow-up (206).

2.5.1.2 Cyclic variation of the integrated backscatter

Myocardial reflectivity changes during the cardiac cycle, and it is considered to reflect intrinsic myocardial contractility although the exact basis is unknown (205, 219). It seems to be a sensitive and early sign of changes in myocardial contractility that can predict
adverse events. In addition, changes in the CVIBS correlate with other early sensitive markers of myocardial dysfunction, such as global longitudinal, circumferential and radial strain in STE analysis (191). On the other hand, in patients with overt systolic dysfunction, there is a correlation between the CVIBS and regional systolic thickening and global shortening fraction and CVIBS seems to decline with age (204, 212).

In experimental myocardial ischaemia, changes in the magnitude and delay of the CVIBS appeared within ten minutes (218, 230). The blunted contractility of the CVIBS recovered after reperfusion within ten to twenty minutes, while wall motion abnormalities and wall thickening remained reduced for over two hours (198, 218). Therefore, the CVIBS seems to uncover the restoration of the myocardial function earlier than the conventional parameters. In chronic ischaemia, myocardial viability was assessed with FDG-PET and it was compared to the measurement of CVIBS in a work by Komuro et al (197). The CVIBS could detect myocardial viability with 92% sensitivity and 94% specificity. Furthermore, in a work by Zuber and co-workers, a dissociation between systolic wall thickening and CVIBS was found, which was considered to indicate myocardial hibernation (212). All in all, the CVIBS seems to promptly detect ischaemia-induced changes and recovery after reperfusion as well as myocardial viability and hibernation. However, compared with the dobutamine stress test the CVIBS failed to predict contractile reserve (197), which might be due to its ability to pick up the segments with hibernation, too.

A depression in the CVIBS is the first sign of myocardial dysfunction in several conditions. In Wilson’s disease, cardioid sarcoidosis, primary hyperaldosteronism and in progressive external ophthalmoplegia, blunted CVIBS is able to discriminate patients from controls in the absence of other changes in conventional echocardiography (204, 215, 219, 220). Effective treatment of hypertension, thyroidal dysfunction and postmenopausal status seems to reverse the changes in CVIBS (214, 221, 225). On the other hand, reduced CVIBS predicts cardiac allograft rejection, mortality from cardiac amyloidosis and LV remodeling in ischaemic and non-ischaemic situations (191, 205, 222, 223). In summary, the CVIBS reveals cardiac abnormalities early on, shows effective treatment responses and predicts adverse events.
The era of strain measurements by echocardiography started in the 1990s with tissue Doppler imaging (TDI) (231). However, the method had inherent weaknesses due to poor signal-to-noise ratio, suboptimal reproducibility and angle dependency. Therefore, it has not been adopted to the clinical practice (192, 232). Later on, speckle tracking technology was created. STE is based on acoustically stable spots formed by myocardial fibres that are oriented in different directions (Fig. 2.5.2). Blocks of speckles can be followed frame by frame in STE soft-ware off-line analysis to determine the myocardial deformation (192, 231, 232). A change from the baseline value, also referred to as Lagrangian strain, is expressed as a percentage. Shortening is presented as a negative value, and lengthening or thickening is presented as a positive value (231-233). Myocardial strain can be measured in two-dimensional (2D) imaging in three directions, in longitudinal, in circumferential and in radial directions (231). The speed of the change, also known as strain rate (SR), is expressed as 1/s (232, 233). In addition, LV rotational movements can be measured.

The strain values can be derived locally, regionally or globally. Local changes can be used in clinical diagnostics in some extend. In ischemic heart diseases local changes in the affected coronary territory can be detected, but this needs to be more profoundly verified (234, 235). In hypertrophic cardiomyopathy, longitudinal strain is often decreased in the area of hypertrophy, most often in the septum and in patients with amyloidosis typical apical sparing is observed (231, 236, 237). In constrictive pericarditis, lateral depression can be observed, whereas typical decline after anthracycline treatment is located apically and anteriorly (12, 238). Of the global values, GLS seems to be the most robust measurement.
Figure 5. Speckle tracking analysis. The myocardial tissue has naturally stable speckles. They originate from myocardial fibres with different orientation. On the right upper corner, a part of the left ventricle’s lateral wall is zoomed to illustrate the myocardial speckles. Speckle tracking analysis follows these speckles from frame to frame and calculates myocardial deformation in different directions. On A, B and C the left ventricle in four-chamber, two-chamber and three-chamber views has been analysed with speckle tracking software. The regional and global longitudinal results are displayed in D.

2.5.2.1 Global longitudinal strain

GLS is an averaged value of longitudinal strain values in three apical views of the LV. The GLS is automatically calculated from the four-, three- and two-chamber views by the soft-ware program. The longitudinal strain is considered to present the endocardial function of the LV (232). As the endocardium seems to be the most vulnerable part of the LV, the earliest signs of LV dysfunction can be detected in parameters describing the longitudinal function, such as GLS (232). In patients with hypertension, diabetes,
obesity, sarcoidosis, rheumatoid disease and ischemic heart disease, changes in GLS can be detected even in the absence of other changes in conventional systolic dysfunction (239-246). In heart failure patients requiring heart transplantation, GLS was strongly associated with LV fibrosis (247).

GLS can be used also in clinical diagnostics and in the determination of patient’s prognosis. There are several clinical scenarios where conventional echocardiography and measurement of the LVEF are not sufficient for clinical diagnostics. For example, differentiating cardiomyopathy from athletes’ heart is often challenging. Acute and prolonged exercise have been reported to induce a transient decline in cardiac function detectable with GLS (248-250), where exercise related tachycardia, increase in ventricular wall stress and changes in loading conditions probably are participating factors. Compared to the normal population, athletes have mildly lower GLS values due to physiological cardiac adaptation that persist for years after the active training period (251, 252), though, other report showed better strain values in athletes (253). However, clinical issue consists of differentiating athletes from cardiomyopathy with a lookalike phenotype – a differentiation with a huge impact on athlete’s carriare. Athletes have significantly better GLS than patients with cardiomyopathy with a cut-off value of -14% (254, 255). In the screening of cardiomyopathy gene-carriers, GLS seems to be useful in dilating cardiomyopathy (256, 257). Declined values have also been reported in gene-carriers of hypertrophic cardiomyopathy, while some reports have indicated that the initial alterations are changes in twist and regional function (237, 258, 259).

GLS has been proven to be a strong predictor in several clinical scenarios. GLS can predict the later deterioration of LV function after chemotherapy treatment (260-264), after valve operations (265-268) and in myocardial infarction patients (269, 270). It has been associated with adverse remodeling in patients with myocardial infarction, dilated cardiomyopathy or diabetes (271-273). Patients with aortic stenosis with and without reduced LVEF as well as patients with heart failure and with chronic ischemic cardiomyopathy, with amyloidosis or chronic kidney disease show increased mortality associated to lower GLS (274-279). In fact, a low GLS is an independent predictor of many major cardiac adverse events, such as cardiac and overall mortality, stroke, hospitalisation for cardiac reasons and for arrhythmias in patients with pre-existing cardiac disease and in other patient populations and even in unselected population (239, 280-287).
GLS has not yet been widely adopted in the follow-up recommendations, or for guiding patient management, even though it can be an early indicator of myocardial involvement, it can help to differentiate pathological and normal conditions, and it has a strong prognostic value. In the Cardio-oncology position paper released by European Society of Cardiology in 2016, it was recommended that chemotherapy patients should be measured for GLS during the surveillance of the cardiotoxicity (8), with an abnormal response defined as a 10-15% change from the original value (8, 288, 289). The absence of GLS in the guidelines is probably due to its novelty and therefore shortage of wide-scale research qualifying it to the recommendations rather than its inability to be a useful method in this sense.

2.5.2.2 Other measurements in speckle tracking echocardiography

SR describes the speed by which strain changes (192, 290). Compared to strain measurements, it is less affected by heart rate and changes in cardiac preload and afterload (291, 292). SR, however, is undermined by technical limitations and has not been adopted to clinical practice (231).

Circumferential strain can be measured in the parasternal short axis views of the LV (Figure 6). Circumferential strain measures the transverse (tangential) contraction of the LV (233). The transverse fibres of the LV dominate the outer and apical layers of the LV (232). Circumferential strain better represents epicardial function than GLS. In most of the common heart diseases, the more vulnerable endocardial portion of the LV is the first to be affected, and circumferential contraction gets afflicted in more advanced stages of the disease or in local transmural diseases. In patients with acute heart failure with low LVEF and GLS, global circumferential strain (GCS) independently predicted adverse events (293). On the other hand, in conditions that affect primary epicardial layers, such as constriction or myocarditis, the primary phenomenon can be circumferential strain depression without a significant decline in GLS (232, 238, 294).

Radial strain measures myocardial systolic thickening (233). It is measured in the parasternal short axis views. It shows compensatory increase in response to longitudinal strain decline in diabetic patients (240, 242). It seems to detect different myocardial pathologies, but it has been seriously undermined by its poor repeatability (295).
In addition, LV rotation can be measured from the parasternal views and is measured in degrees (°). Seen from the apex, basal rotation is usually counterclockwise and apical rotation is clockwise (232). The difference between apical and basal rotation is expressed as twist (°), and when the exact distance between the basal and apical segments can be measured, it can be expressed as torision (°/cm) (232). The twisting motion of the LV improves the mechanical efficacy of the LV in systole, and stores kinetic energy, which is released like a spring during early diastole (232). In the early stage of myocardial dysfunction, the endocardial layers are most often affected. The balance between the endocardial and epicardial fibers is thereby shifted, and in the apical segments, the stronger effect of epicardial layers produces stronger, and delayed, clockwise rotation (296). Such effects have been seen in ischaemia, diabetes, hypertension and even with ageing (296). Enhanced rotation delays early diastolic function, and it has been postulated that further deterioration gradually leads to changes in longitudinal systolic function and finally to a reduction in all directions, thus leading to changes in global systolic function (296). In extreme cases, the reversal of apical rotation can be seen in patients with advanced dilated cardiomyopathy (297).

Figure 6.
Circumferential speckle tracking analysis. The top figures from A to C illustrate the parasternal short axis clips from the mitral valve, the papillary muscle and from the apical levels, respectively. The global and regional results are displayed on the bottom.
The versatility of the STE technique has produced several other measurements that, so far, have been used only in research. Mechanical dyssynchrony has been evaluated by the differences in the regional time-delay in the different LV regions. It is used to predict responders for cardiac resynchronising therapy (i.e., biventricular pacing), however, its role is unclear (298, 299). Mechanical dispersion has been detected in patients with long QT syndrome (300). Delayed regional systolic contraction (i.e., post-systolic strain) has been associated with ischaemic segments and viability, but it can also be observed in scarred tissue (231, 301, 302).

The novel techniques are 3D strain measurements and layer specific strain evaluation. There are three major advantages regarding 3D strain measurements. First, the false apex problem and second, out-of-plane movement of the speckles, can virtually be eliminated. Third, all views are measured simultaneously, and thus, the differences by shorter or longer cycles will be eliminated. Also, from 3D strain measurements, area strain was introduced (303). However, with current technology, spatial and temporal resolution are poor, and the reproducibility of the 3D strain is not sufficient enough to qualify it for clinical use (231). There are a few validation studies regarding layer specific strain. The longitudinal strain’s intra and interobserver variability measured with correlation coefficients were 0.94-0.97 and 0.80-0.83, respectively (304). However, its clinical significance has so far not been impressive – layer specific strain did not exhibit improved diagnostic value over conventional GLS in ischaemic patients (305).
2.5.2.3 Validation, strengths and weaknesses of the STE measurements

To be a valid tool, a new method needs to be validated, the variability and normal values need to be defined and its strengths and weaknesses need to be addressed.

At the beginning of the 21st century, STE validation against sonomicrometry and CMR was performed (302, 306-310). The issue of intervendor differences has been actively addressed by a EACVI-ASE-Industry Task Force (12, 233). Even so, the intervendor differences still exist, and the values derived from different vendors are not fully interchangeable, although small reports indicate that intervendor variability is as low as 5% (12, 311, 312). However, the GLS results from vendor to vendor differ, and there seems to be a discrepancy of the influence of patients’ age between the vendors (12). The normal GLS values are now well defined, for Philips and for 50-70 years old ladies (as in our study), it is approximately -13% to -17% (12, 313). The variability of the STE measurements have been extensively explored. The intraobserver variability for GLS has been good, 3-5% (relative), 1.1% (absolute) or ICC 0.84-0.95 and the interobserver variability 6-8% (relative), 1.1-1.5% (absolute) or ICC 0.71-0.91 (12, 273, 311, 314). The validation values for circumferential and radial strain, and for SR and for rotational measurements have been worse (231).

The STE method has several other strengths. Direct measurement of myocardial function by STE can be considered to be a more precise method than sole LVEF measurement. For example, in small hypertrophied LV, the calculated LVEF can be normal or even supranormal despite functional abnormalities, which misassumption can be avoided with direct myocardial measurements by using the GLS measurement. In addition, both global and local function can be estimated with STE technique. Compared to TDI, the major advantage of the STE technique is that it is less angle dependent (192). The block of speckles can be followed-up in 2D images in any direction, but due to poorer lateral resolution in echocardiography in general, the axial movements are more accurately followed (192, 231). However, deviations from direct the axial angle do not significantly undermine the results.

There are some pitfalls one must be aware of while using the STE measurements. Like in the measurement of Simpson’s LVEF, true apex and loading conditions have major effects on the GLS measurement. A forshortened apex leads to overestimation of the contractility, and thus, the consideration of the apex must actively be incorporated in the
evaluation of the image quality (192, 231). Likewise, the GLS measurement is sensitive to loading conditions. Blood pressure and valvular abnormalities should be taken into account while evaluating the GLS measurements (231, 295, 313). Furthermore, the frame rate of the images should be between 40 and 80 frames/second, since lower and higher frame rates lead to a loss of information in the calculation process. Some of the events, especially systolic and diastolic SR measurements, are faster than that and would optimally require frame rates over 100 frames/second (231, 233). With lower frame rates, some information can be lost, and peak velocities can be missed (232). In 2D imaging, the twisting movement and respiration derived displacement of the heart can cause the speckles to move out of the plane, and thereby cause inadequate tracking (192). In addition, with serial image acquisition, instead of simultaneous, the loops can have varying lengths, which in theory can influence the global values. Finally, doubt has been cast over the reproducibility of the GLS measurement outside the academic environment, even though small studies show that the level of expertise has less influence on the GLS results than on the measurements of the LVEF (315).

3. AIMS OF THE STUDY

The aims of this study were to explore whether modern conformal RT for early-stage breast cancer induces any echocardiographically detectable global or local changes in cardiac structures or function in the early phase after the treatment and whether they are

- associated with the RT doses and fields
- accompanied by abnormalities in ECG and biomarkers
- potentially useful in the screening of patients who would benefit from well-organised long-term follow-up
4. METHODS

4.1 Patients

4.1.1 Recruitment of patients

The study population was recruited at the Department of Oncology, Tampere University Hospital, Finland from July 2011 to November 2013 and the cardiological examinations were performed at the Heart Center, Tampere University Hospital, Finland. The study population consisted of eligible breast cancer patients treated with adjuvant RT after breast cancer resection or ablation. A total of 119 patients were included (Figure 4.1). The studies presented here focused on the patients receiving adjuvant RT only to exclude confounding effects of the chemotherapy treatment. A total of sixty patients with left-sided and twenty patients with right-sided breast cancer were included in the analysis. The exclusion criteria were age under 18 years or over 80 years, other malignancy, pregnancy or breast feeding, acute myocardial infraction within 6 months, symptomatic heart failure (NYHA 3-4), dialysis, permanent anticoagulation therapy and severe psychiatric disorders. Patients with atrial fibrillation, left bundle branch block, permanent cardiac pacemaker and severe lung disease were also excluded in order to improve the quality of the echocardiographic imaging.

Figure 7. Flow chart showing the subgroups of the recruited patients. Bolded numbers show patients analysed in this dissertation.
4.1.2 Study protocol

The recruited patients were examined 6±8 days prior to RT and again at 1±1 days after the completion of RT. The time interval between the studies was 19 to 91 days. In addition to the comprehensive echocardiography examination, each study visit included measurement of blood pressure, a 12-lead ECG and 24-hours Holter recording. Blood samples were collected prior to RT, once during the treatment course and at the last visit. Data from each visit were analysed, and a patient record was created in the Tampere University Hospital clinical electronic patient database (Miranda).

4.1.3 Ethical aspects

The study protocol was approved by the Ethics Committee of Tampere University Hospital. The protocol complies with the Declaration of Helsinki. Written informed consent was obtained from all study participants.
4.2. Radiotherapy

Treatment planning was done using 3D CT imaging (Philips Big Bore City, Philips Medical Systems, Wisconsin, USA) with an Eclipse v.10 System (Varian Medical Systems, Palo Alto, CA, USA) by the same radiation oncologist (Figure 8). Radiation doses were calculated using the anisotropic analytical algorithm, and dose-volume histograms were generated for different cardiac structures in each patient (Table 2). The treatment doses complied with local clinical guidelines, the standard treatment doses were 50 Gy in 2 Gy fractions, and the hypofractionated doses were 42.56 Gy in 2.66 Gy fractions. An additional boost of 16 Gy in 2 Gy fractions to the tumour bed was administered when clinically indicated.

<table>
<thead>
<tr>
<th></th>
<th>Left-sided breast cancer</th>
<th>Right-sided breast cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Range [min, max]</td>
</tr>
<tr>
<td>Whole heart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.1</td>
<td>[0.7, 6.8]</td>
</tr>
<tr>
<td>Peak</td>
<td>47.0</td>
<td>[5.8, 64.2]</td>
</tr>
<tr>
<td>Left ventricle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.4</td>
<td>[0.8, 12.3]</td>
</tr>
<tr>
<td>Peak</td>
<td>45.8</td>
<td>[4.5, 63.8]</td>
</tr>
<tr>
<td>LAD-region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>19.2</td>
<td>[2.0, 41.4]</td>
</tr>
<tr>
<td>Peak</td>
<td>45.3</td>
<td>[4.4, 77.0]</td>
</tr>
<tr>
<td>Right ventricle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.4</td>
<td>[0.9, 9.2]</td>
</tr>
<tr>
<td>Peak</td>
<td>38.8</td>
<td>[2.9, 50.6]</td>
</tr>
</tbody>
</table>

LAD, the region of the heart perfused by the left anterior descending artery.
Figure 8. Radiotherapy planning. On the left upper corner (A), radiation oncologist is contouring treatment doses on her workstation. The right upper corner (B) shows dose-volume histograms for different cardiac structures derived from 3D treatment planning. The bottom figures show 3D CT treatment planning in one plane for a patient with left-sided (C) and for a patient with right-sided (D) breast cancer. The different colors in the CT images indicate different radiation doses, blue coloring indicating lower doses and increasing doses from yellow to red. The treatment doses are shown with 5 Gy for red color in patients with left-sided breast cancer (C) and 1 Gy in patients with right-sided breast cancer (D).
4.3 Echocardiographic examinations

A predefined protocol included structured acquisition of on-line measurements and optimised clips for further off-line analysis. The same cardiologist created the protocol and performed all of the studies (SST). All echocardiographic examinations were performed with a cardiac ultrasound machine (Philips ic33 ultrasound system, Bothell, Washington, USA) equipped with a 1-5 MHz matrix-array X5-1 transducer.

All of the acquisitions were performed at rest, and the Doppler recordings were acquired at end-expiration. Subcostal imaging was performed with patients in the supine position, and other imaging was performed when the patient was lying in the left lateral decubitus position. A simultaneous superimposed ECG was displayed throughout the echocardiography and care was taken to assure optimal signal for the off-line analysis for speckle tracking and to enable the differentiation of the cardiac phases in Doppler recordings. The image quality was graded from 1 to 4 (1 being very poor image quality making reliable measurements difficult in over 20% of the on-line measurements, and 4 being optimal image quality). The mean image quality in the baseline study was 2.80±0.88 (mean±SD) and in post-RT study was 2.86±0.88. At baseline examination image quality was excellent (class 4) in 17 (21.3%) and very poor (class 1) in 7 (8.8%) patients. The corresponding numbers at the control examinations were 20 (25.0%) and (7.5%), respectively.

The raw data were stored in an external hard drive, and the off-line analyses were performed using specific software (Philips Qlab, Bothell, Washington, USA; version 8.1.2 for IBS and 3D LV analysis and 9.0 for all STE analysis). All measurements were performed according to contemporary international recommendations for echocardiographic examinations (192, 316-320). When clinically significant cardiac abnormality was detected, additional measurements and other examinations were performed according to normal clinical practice. All imaging was stored in the Tampere University Hospital clinical database (Excelera, Philips).
4.3.1 Conventional echocardiography

4.3.1.1 Conventional two-dimensional echocardiography

Optimisation of 2D imaging was performed by several means as predefined in the protocol. The images were shortened and the sector was narrowed to show only the focused issues with the highest possible frame rate. Lower transducer frequencies and harmonic imaging were applied when needed. Optimal gain was tuned and additional optimising with time- and lateral gain was performed when necessary.

Right ventricle (RV) basal dimensions were measured from the apical four-chamber view at end-diastole while ensuring that the true apex and the crux of the atrioventricular valves were visualised. The aortic root, conventional left atrial diameter, LV dimensions and wall thicknesses were measured from the parasternal long axis view as orthogonal as possible. The left atrial volume was measured by tracing from the apical two- and four-chamber views at the maximal atrial diastole and it was indexed to body surface area.

4.3.1.2 M-mode analysis

M-mode was used to measure wall thickness and dimensions as well as left atrial and aortic root diameters. Tricuspid annular plane systolic excursion (TAPSE) was measured in the apical four-chamber view by placing the measurement line in the lateral tricuspid annulus while minimising the angle error between the measurement line and the longitudinal contraction of the RV free wall. The absolute angle error was 6.1±5.5 ° in the baseline study and 7.6±4.3 ° in the control study. The mean difference between the studies was 3.0±2.3 °, and the maximal angle difference from the baseline to the control study was 9.7° (Figure 9). The parasternal measurements were performed as perpendicular as possible.
4.3.1.3 Doppler echocardiography

All Doppler recordings were performed during quiet breathing at end-expiration. Care was taken to minimise the angle error in all Doppler recordings. The mitral and tricuspid inflow was measured by placing the measurement point of the pulsed Doppler at the tips of the valve. The LV and RV outflow recordings were performed at the level where the closing signal but not the opening signal could be detected. Continuous Doppler was used to record tricuspid regurgitation gradients and to record aortic and pulmonic valve flow velocities. Additional measurements were taken as needed in valvular pathologies.

4.3.1.4 Pulsed tissue Doppler echocardiography

Pulsed tissue Doppler analyses were performed at the RV lateral annulus and at the septal, lateral, anterior and posterior mitral annulus. In all recordings, the angle error was minimised and the image was narrowed. The measurement point was placed approximately 0.5-1 cm apically from the annulus in the middle of the myocardium. In addition, visual inspection was used to assure that the measurement point stayed within the myocardium throughout the whole cardiac cycle prior to recording.
4.3.1.5 Three dimensional echocardiographic analysis

3D echocardiography was performed from the apical views as full-volume four-cycle acquisitions. Due to low image quality, 3D echocardiography analysis could not be performed in 11 (14%) of the patients in the baseline study and in 13 (16%) of the patients in the control study.

4.3.2 Advanced echocardiography

4.3.2.1 Integrated backscatter

IBS was measured off-line from the parasternal long-axis clip and from the parasternal short-axis clip at the papillary muscle level. Prior to the clip acquisition, the time and lateral gains were set to the neutral position. Gain was increased to a level where the cavity colouring was slightly grey instead of black. An acquisition contained at least three cycles. The parasternal clip was as perpendicular as possible, and the short-axis clip was as round as possible.
4.3.2.1.1 Calibrated integrated backscatter

Figure 10. Measurement of the calibrated integrated backscatter. The clip is scrolled to the end-diastole. The septal square is red and the corresponding value is presented on the left margin as ROI 1. The yellow posterior square is ROI 2, the turquoise pericardial rectangle is ROI 3, the blue outflow tract square is ROI 4 and the purple right ventricular free wall square is ROI 5.

A parasternal long-axis clip was analysed with the region of interest (ROI) program in the Philips Qlab software (version 8.1). The clip was scrolled to first frame where the mitral valve was closed. A square of five millimetres was placed in the basal interventricular septum, carefully avoiding the endocardial bright borders as well as very bright or dark areas within the myocardium. A second square was placed in the posterior wall, and a third square was placed in the LV outflow tract and fourth in the RV free wall. A rectangle was placed in the posterior pericardium (Figure 10). After the first values were recorded, the clip was then scrolled to the next end-diastolic frame, and new measurements were made. The measurement area was repositioned if necessary. The average of three measurements was used for the calculations. The myocardial values were calibrated by subtracting the cavity or the pericardial value from the myocardial value (191). Analysis of the cIBS was possible in 72 (90%) patients in the baseline study and in 78 (98%) in the control study.
4.3.2.1.2 Cyclic variation of the integrated backscatter

Measurements of the CVIBS were performed in Philips Qlab (version 8.1). A five millimetre square was placed in the anterior part of the interventricular septum and a second square was placed in the posterior wall (Figure 11). The clip was inspected throughout the cycles and repositioning was made if necessary. The highest and the lowest values were recorded, and the CVIBS was calculated as the difference between these two values. The septal and posterior CVIBS was analysable in 71 (89%) and 70 (88%) in the baseline and in 76 (95%) and 77 (96%) in the control studies, respectively.

Figure 11. Measurement of the CVIBS. A parasternal short axis view at the level of papillary muscles is acquired for further analysis. The regions of interest were placed in the anterior septum (yellow box and line) and in the posterior wall (red box and line). After visual inspection of adequate tracking, the highest and lowest values were collected. The CVIBS was calculated as the difference between these values.
4.3.2.2 Speckle tracking echocardiography

Three apical and three parasternal clips of the LV over three cardiac cycles were acquired for off-line STE analysis. The apical clips were apical four-chamber, apical two-chamber and apical three-chamber clips. The three parasternal short-axis clips were recorded at the mitral valve level, at the level of papillary muscles and at the apex level. In addition to the general image optimising, further optimising was performed in order to ensure the best possible tracking. The most important step in the additional optimisation processes was to exclude bright shadowing and other image artefacts from and near the measurement fields. Also, the gain was manipulated to visualise the natural speckles of the myocardium in the best possible way over the whole area of interest. Furthermore, attention was payed to the ECG quality.

![Diagram](image)

Figure 12. Measurability of the segments in speckle tracking analysis. The upper row shows longitudinal measurements (A and B), and the lower row presents the circumferential measurements (C and D). The baseline studies are on the left (A and C), and the control studies are on the right (B and D). The colouring shows the percentage of the excluded segments, with the green colour showing the best measurability and the red the worse. The number of green segments rose from seven to ten in the longitudinal strain measurements from baseline to the control study, and from six to seven in the circumferential measurements.
4.3.2.2.1 Strain analysis in speckle tracking echocardiography

STE strain analyses were performed off-line with Philips Qlab version 9.0 with a semiautomatic software program. End-systole was defined either by aortic valve closure, by visual estimation based on LV contraction or by the end of the T-wave in ECG. Adequate tracking was controlled by visual inspection, and correction with reanalysis was performed when necessary. Segments with repeated inadequate tracing were excluded from the final analysis. In apical recordings the highest segmental exclusion rate was 15% and 12% (basal anterior septum) in the baseline and control studies, respectively and 10% and 5% (apical posterior segment) for the respective parasternal short-axis clips. Global and segmental values were recorded and regional values were calculated as an average of the segments involved. When two or more segments were missing, regional calculations were not made.
4.3.2.2 Strain rate analysis in speckle tracking echocardiography

Figure 13. Measurement of the systolic longitudinal strain rate in STE. The upper part of the figure shows measurements of several segments in the apical four-chamber view with a cluster of strain rate lines in the panel underneath. The bottom of the figure shows an individual line from the apical septal segment after other segments were removed. From this line, the deepest systolic strain rate is -1.325/s.

The systolic strain rate in the STE analysis was defined as the peak negative velocity during the systole in each segmental slope (Figure 13). The regional and global values were calculated as an average of the segments involved.

4.3.2.2.3 Rotation and twist in speckle tracking echocardiography

STE analysis for the parasternal short-axis clips was used to define basal and apical rotation. The maximal values and their timing were recorded. The timing was adjusted to the pulse at the time of the recording. Twist was calculated as the difference between basal and apical rotation.
4.4 ECG

A 12-lead ECG was obtained at each visit. The ECG was taken with a 50 mm per second speed with a voltage calibration of 10 mm=1 mV. Heart rate, QRS morphology and T-wave inversions and their locations were recorded.

4.5 Cardiac biomarkers

A blood sample for high-sensitivity troponin T (hsTnt) and proBNP analyses were collected at the baseline visit, once during the treatment period and at the control visit. The analysis was performed in the hospital laboratory using routine clinical analysis. A value of 4 ng/l was used in the analysis if hsTnt was lower than the detection threshold of 5 ng/l.

4.6 Statistical methods

Categorical data are presented as absolute numbers and percentages. Continuous variables are described by the mean and standard deviation in normally distributed data and by medians with ranges for variables with skewed distribution. Normality of the distribution was assessed after visual inspection of the histogram and bar-plot appearance, by the Kolmogorov-Smirnov test, by taking into account of the skewness, kurtosis, and by comparing the similarity of means and medians. Comparisons between non-related groups were performed with independent samples t-test, with the independent samples Mann-Whitney U test and with the Chi-Square or Fishers exact test for variables with normal, skewed distribution and categorical variables, respectively. The differences between baseline and post RT values were tested with paired t-tests for normally distributed variables and with Wilcoxon signed-rank test for variables with a skewed distribution. Categorical variables were tested with Chi-Square or Fishers exact test. Associations between normally distributed variables were tested with Pearson correlation, and with Spearman correlation when non-normally distributed variables were tested. Binary logistic or linear regression analyses were employed to conduct univariate and multivariable analyses. Reproducibility was tested with inter class correlation and Blant Altmant plots. All tests were two-sided and P-values <0.05 were considered statistically significant. Statistical analysis was carried out with IBM SPSS statistics for Windows, versions 19, 20, 22 and 23 (I, II, III, IV).
5. RESULTS

5.1 Characteristics of the study population

The characteristics of the study population and their distribution in publications I-IV are presented in Table 3. One patient withdrew her involvement in the study between the baseline and the control examination and she was excluded from the final analysis. The follow-up success was 99%.

None of the patients had any cardiac symptoms in the study period, except for palpitations in two patients. One patient had undergone CABG 20 years previously and another patient had a biological aortic valve replacement operation four years prior to the breast cancer treatment. Both had moderate aortic stenosis at the baseline study. Two patients had moderate aortic regurgitation, and two others had a bicuspid, but well-functioning aortic valve with a mildly dilated ascending aorta. One patient had a mild ebstanoid dysplastic tricuspid valve anomaly. Two patients had mild sick sinus syndrome and two patients were put on beta blocker medication due to an excess amount of ventricular extrasystoles on the Holter recording. Finally, a dual-chamber cardiac pacemaker was installed for one patient for a Morbitz type-2 atrio-ventricular block that was discovered on the Holter recording.

In summary, abnormal findings in the baseline examination led either to clinical follow-up or to a change in the patient treatment in ten patients (13%). However, the findings and treatment between the baseline and the control studies were unchanged and did not influence our results. After the study period, the patient with previous CABG underwent through a TAVI procedure, and the patient with aortic valve prosthesis has been treated conservatively so far.
Table 3. Baseline characteristics of the study population

<table>
<thead>
<tr>
<th></th>
<th>The whole group</th>
<th>Left-sided breast cancer</th>
<th>Right-sided breast cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=80</td>
<td>n=60</td>
<td>n=20</td>
</tr>
<tr>
<td>Included in study I</td>
<td>49 (61.3)</td>
<td>49 (81.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Included in study II</td>
<td>78 (97.5)</td>
<td>58 (96.7)</td>
<td>20 (100.0)</td>
</tr>
<tr>
<td>Included in study III</td>
<td>73 (91.3)</td>
<td>53 (88.3)</td>
<td>20 (100.0)</td>
</tr>
<tr>
<td>Included in study IV</td>
<td>80 (100.0)</td>
<td>60 (100.0)</td>
<td>20 (100.0)</td>
</tr>
<tr>
<td>Age (years) *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63 (61.3)</td>
<td>63 (81.7)</td>
<td>62.9 (4.7)</td>
</tr>
<tr>
<td>BMI (kg/m²) †</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.4 (24.3, 30.0)</td>
<td>26.3 (24.1, 29.9)</td>
<td>26.6 (24.7, 30.0)</td>
</tr>
<tr>
<td>Breast cancer ablation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 (1.3)</td>
<td>1 (1.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Adjuvant aromatase inhibitor</td>
<td>30 (37.5)</td>
<td>22 (36.7)</td>
<td>8 (40.0)</td>
</tr>
<tr>
<td>Adjuvant tamoxifen</td>
<td>6 (7.5)</td>
<td>2 (3.3)</td>
<td>4 (20.0)</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>10 (12.5)</td>
<td>8 (15.3)</td>
<td>2 (10.0)</td>
</tr>
<tr>
<td>Previous</td>
<td>9 (11.3)</td>
<td>7 (11.7)</td>
<td>2 (10.0)</td>
</tr>
<tr>
<td>Concurrent diagnosis of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>35 (43.8)</td>
<td>22 (36.7)</td>
<td>13 (65.0)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>7 (8.8)</td>
<td>4 (6.7)</td>
<td>3 (15.0)</td>
</tr>
<tr>
<td>High cholesterol</td>
<td>18 (22.5)</td>
<td>14 (23.3)</td>
<td>4 (20.0)</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>1 (1.3)</td>
<td>1 (1.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Significant valvular abnormality</td>
<td>5 (6.3)</td>
<td>3 (5.0)</td>
<td>2 (10.0)</td>
</tr>
<tr>
<td>Hypothyreosis</td>
<td>10 (12.5)</td>
<td>7 (11.7)</td>
<td>3 (15.0)</td>
</tr>
<tr>
<td>Otherwise healthy</td>
<td>33 (41.3)</td>
<td>28 (46.8)</td>
<td>5 (25.0)</td>
</tr>
<tr>
<td>Regular medication of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betablocker</td>
<td>12 (15.0)</td>
<td>7 (11.7)</td>
<td>5 (25.0)</td>
</tr>
<tr>
<td>Calcium channel blocker</td>
<td>8 (10.0)</td>
<td>4 (6.7)</td>
<td>4 (20.0)</td>
</tr>
<tr>
<td>ACE/ATRB</td>
<td>25 (31.3)</td>
<td>15 (25.0)</td>
<td>10 (50.0)</td>
</tr>
<tr>
<td>Statin</td>
<td>16 (20.0)</td>
<td>12 (20.0)</td>
<td>4 (20.0)</td>
</tr>
<tr>
<td>Diuretics</td>
<td>15 (18.8)</td>
<td>8 (13.3)</td>
<td>7 (35.0)</td>
</tr>
</tbody>
</table>

BMI, body mass index; ACE, angiotensin inhibiting enzyme; ATRB, angiotensin reseptor blocker. * mean and standard deviation. † median and (Q₁, Q₃). The p-value marks the difference between left-sided and right-sided breast cancer patients.
5.2 Changes in RV function after RT

The changes in RV function are presented in Study I. RT induced a decline in TAPSE from 24.5±4.0 mm to 22.4±3.9 mm (p<0.001) in patients with left-sided breast cancer. There were no other significant changes in the RV functional parameters, including pulsed tissue Doppler parameters; isovolumetric velocity (IVV), acceleration of the isovolumetric velocity (IVA) and the systolic velocity of the pulsed tissue Doppler derived from the lateral tricuspid annulus were 13.0±4.8 cm/s and 12.6±3.8 cm/s (p=0.828), 2.8±1.0 cm/s and 2.7±0.9 cm/s (p=0.439), 12.7±3.1 cm/s² and 12.2±3.9 cm/s² (p=0.114) at baseline and after RT, respectively. Patients using levothyroxine (p=0.030) diuretics (p=0.030) and ACE/ARBs (p=0.060) had a smaller reduction of TAPSE after RT in univariate analyses.

5.3 Changes in cIBS after RT

The impact of RT-induced changes on the cIBS measurements was evaluated in Study II. Patients with left-sided breast cancer showed increased tissue density after RT in the RV free wall and in the interventricular septum but not in the LV posterior wall. The RV values with pericardial calibration changed from -15.0±7.3 dB to -13.7±7.9 dB (p=0.079) and with cavity calibration from 20.4±5.9 dB to 22.1±5.6 dB (p=0.046). The values in the interventricular septum with pericardial and cavity calibration changed from -18.2±5.1 dB to -16.0±6.4 dB (p=0.002) and from 17.3±5.2 dB to 19.8±5.5 dB (p<0.001), respectively. The patients with right-sided breast cancer were spared from these changes.

In the multivariable analyses the septal cIBS values were independently associated with the percentage of LV that was exposed to 20 Gy radiation (OR 3.22 [95% CI 1.05-9.88]) and with the mean lung dose (OR 1.69 [95% CI 1.01-2.84]). Changes in the RV were associated with the changes in TAPSE (p=0.045), mitral inflow dt (p=0.022) and diabetes (p=0.015).

5.4 Changes in CVIBS after RT

The changes in CVIBS after RT were examined in Study III. The patient group was divided based on the mean heart radiation dose, into those who received less than a 2 Gy mean heart dose and to those who received more than a 2 Gy mean heart dose. The septal CVIBS values decreased from 12.0±3.4 dB to 9.6±2.5 dB (p<0.001) and posterior
values declined from 12.8±2.7 dB to 11.3±2.4 dB (p=0.007) in patients with more than a 2 Gy mean heart dose. Patients who received under a 2 Gy mean heart dose did not have significant changes in the CVIBS measurements.

In the multivariable analyses, AI (β=2.986, p=0.001) and body mass index (BMI) (β=-0.241, p=0.014) were independently associated with the septal CVIBS reduction, whereas the mean lung dose (β=-0.485, p=0.018) and non-smoking status (β=2.411, p=0.009) were independently associated with declining posterior CVIBS values.
5.5 Systolic changes in speckle tracking analysis after RT

5.5.1 Global changes

In Study IV, the RT-induced changes in STE measurements were analysed with special attention devoted to the detection of differences between patients with left-sided versus right-sided breast cancer. In the whole study population there was a reduction in global systolic function as the GLS declined from -17.9±3.3% to -17.2±3.1% (p=0.028). The GLS was reduced from -18.3±3.1% to -17.2±3.3% (p=0.003) in patients with left-sided breast cancer, and a decrease of over 10% from the baseline was experienced by 17 patients (28%). In patients with right-sided breast cancer, there were no statistically significant differences between the baseline values -16.9±3.8% and values after RT -17.2±2.8% (p=0.577). In circumferential strain and circumferential and longitudinal SR measurements there were no significant changes between the baseline and the control examinations.

In the multivariable analyses the use of AI (β=-2.002, p=0.001) and the decline in LV diastolic volume (β=-0.070, p=0.025) were independently associated with the GLS change.

5.5.2 Local changes in patients with left-sided vs. right-sided breast cancer

In patients with left-sided breast cancer, regional apical strain declined and basal values increased. Apex strain decreased from -18.3±5.1% to -16.5±4.8% (p=0.003) and apical values decreased from -18.6±5.3% to -16.7±4.9% (p=0.002). Prolonged apical rotation time (β=0.012, p=0.011) and increasing LV myocardial mass (β=-0.076, p=0.024) were independently associated with the apical changes in patients with left-sided breast cancer. Basal values increased from -21.6±5.0% to -23.3±4.9% (p=0.024) and increased reflectivity, cIBS, had an independent association with it (β=0.293, p=0.045).

Patients with right-sided breast cancer displayed a local decline in the basal anterior segment. Longitudinal strain in this segment was reduced from -26.2±7.8% to -17.9±8.2% (p<0.001), and anterior basal velocity in pulsed tissue Doppler from (7.1 [6.1, 7.7] cm/s to 5.6 [5.3, 6.5] cm/s (p<0.001). Delayed basal rotation time (β=-0.035, p=0.020) was independently associated with decline in strain, and hypertension (β=1.272, p=0.009) and change in LV end-diastolic diameter (β=0.042, p=0.024) with pulsed tissue Doppler measurement.
5.6 Other changes in echocardiography after RT

The summary of the changes in the conventional echocardiographic parameters is displayed in Table 4. In general, the LV walls got thicker and LV mass increased after RT. The changes were accompanied with minor changes in diastology, and were more frequent in patients with left-sided breast cancer.
Table 4. General changes in conventional echocardiography

<table>
<thead>
<tr>
<th></th>
<th>The whole group</th>
<th>Change after RT in patients with left-sided breast cancer</th>
<th>Change after RT in patients with right-sided breast cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>After RT</td>
<td>n=80</td>
</tr>
<tr>
<td>Left ventricle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEDD (mm)</td>
<td>44.8</td>
<td>44.5</td>
<td>0.213</td>
</tr>
<tr>
<td>LVESD (mm)</td>
<td>30.2</td>
<td>29.8</td>
<td>0.325</td>
</tr>
<tr>
<td>IVS (mm) *</td>
<td>10.0 [9.0, 11.0]</td>
<td>10.2 [9.1, 11.5]</td>
<td>0.001</td>
</tr>
<tr>
<td>PW (mm) *</td>
<td>10.0 [9.0, 10.9]</td>
<td>10.3 [9.8, 11.0]</td>
<td>0.001</td>
</tr>
<tr>
<td>RWT (%) *</td>
<td>0.43 [0.40, 0.49]</td>
<td>0.46 [0.43, 0.51]</td>
<td>0.002</td>
</tr>
<tr>
<td>LVEDV (ml) *</td>
<td>97 [84, 110]</td>
<td>94 [82, 107]</td>
<td>0.061</td>
</tr>
<tr>
<td>LVESV (ml) *</td>
<td>39 [34, 45]</td>
<td>37 [33, 47]</td>
<td>0.947</td>
</tr>
<tr>
<td>LVEDM (g) *</td>
<td>105 [91, 120]</td>
<td>106 [92, 123]</td>
<td>0.012</td>
</tr>
<tr>
<td>Diastolic function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitral E (cm/s) *</td>
<td>73 [64, 83]</td>
<td>67 [59, 79]</td>
<td>0.005</td>
</tr>
<tr>
<td>Mitral a (cm/s) *</td>
<td>226 [193, 253]</td>
<td>239 [204, 271]</td>
<td>0.018</td>
</tr>
<tr>
<td>Mitral E/E*-ratio</td>
<td>77 [63, 91]</td>
<td>77 [63, 87]</td>
<td>0.151</td>
</tr>
<tr>
<td>IVRT (ms) *</td>
<td>9.3 [7.3, 11.4]</td>
<td>9.0 [7.3, 10.3]</td>
<td>0.250</td>
</tr>
<tr>
<td>LAVI (ml/m²)</td>
<td>106 [90, 124]</td>
<td>109 [99, 123]</td>
<td>0.312</td>
</tr>
<tr>
<td>Systolic function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>64 8</td>
<td>65 7</td>
<td>0.637</td>
</tr>
<tr>
<td>LVOT VT (cm)</td>
<td>22.7 4.1</td>
<td>22.3 4.0</td>
<td>0.281</td>
</tr>
<tr>
<td>Right ventricle</td>
<td>RV (mm) *</td>
<td>34.2</td>
<td>[30.9, 38.6]</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>TAPSE (mm)</td>
<td>24.1</td>
<td>4.3</td>
<td>22.3</td>
</tr>
<tr>
<td>IVC (mm)</td>
<td>15.7</td>
<td>4.0</td>
<td>15.1</td>
</tr>
<tr>
<td>vIC (%)</td>
<td>61</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>TR gr (mmHg)</td>
<td>22</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>RV s' (cm/s) *</td>
<td>12.4</td>
<td>[10.4, 13.8]</td>
<td>12.1</td>
</tr>
<tr>
<td>P at (ms)</td>
<td>148</td>
<td>32</td>
<td>145</td>
</tr>
<tr>
<td>RVOT VTI (cm)</td>
<td>16.5</td>
<td>3.2</td>
<td>15.9</td>
</tr>
</tbody>
</table>

LVEDD and LVESD, left ventricle’s end-diastolic and end-systolic diameters; IVS and PW, interventricular and posterior end-diastolic wall thickness; RWT, relative wall thickness of the left ventricle; LVEDV, LVESV and LVEDM, left ventricular end-diastolic and end-systolic volumes, and end-diastolic mass derived from the three-dimensional acquisition; Mitral E, dT, and a, mitral inflow E (early)-wave velocity, early wave’s declaration time and a (late) wave diastolic velocity; Mitral E’-ratio, the ratio between mitral inflow E-wave and averaged pulsed tissue Doppler E’ velocities derived septal, lateral, anterior and posterior walls; IVRT, isovolumetric relaxation time of the left ventricle; LAVI, left atrial volume derived from apical four chamber and two chamber views and indexed to patients body surface area calculated by Mosteller’s model; LVEF, left ventricular ejection fraction; LVOT and RVOT VTI, velocity time integral derived from pulsed Doppler measurement from left and right ventricular out-flow tracts; RV, right ventricular basal measurement from apical four chamber acquisition in end-diastole; TAPSE, tricuspid annular plane systolic excursion; IVC and vIVC, inferior vena cava maximal diameter and its variability by sniffing; TR gr, maximal gradient derived from tricuspid regurgitation flow with continues Doppler measurements; RV s’, the peak systolic velocity of the right ventricular basal free wall in pulsed tissue Doppler measurement; P at, the acceleration time of the pulmonary flow measurement with pulsed Doppler. * median with [Q1, Q3].
5.7 Validation of the advanced echocardiography measurements

Validation measurements were performed for the cIBS, the CVIBS and the STE analysis. Twenty volunteers were recruited and recordings for intra- and interobserver variability and test-retest reproducibility were collected. All validation measurements were blinded. The intraobserver measurements were repeated with more than a month interval. For retest analyses, a second clip was acquired and analysed. Intraclass correlation was used to validate the cIBS and STE, while Blant-Altman plots were performed for the CVIBS measurements.

<table>
<thead>
<tr>
<th>Value of ICC</th>
<th>Strength of Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤0.20</td>
<td>Poor</td>
</tr>
<tr>
<td>0.21-0.40</td>
<td>Fair</td>
</tr>
<tr>
<td>0.40-0.60</td>
<td>Moderate</td>
</tr>
<tr>
<td>0.61-0.80</td>
<td>Good</td>
</tr>
<tr>
<td>0.81-1.00</td>
<td>Very good</td>
</tr>
</tbody>
</table>

ICC, intraclass correlation
Table 5. Reproducibility data of the speckle tracking analysis in healthy volunteers

<table>
<thead>
<tr>
<th></th>
<th>Intraobserver variability</th>
<th>Interobserver variability</th>
<th>Test-retest variability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICC (CI 95%)</td>
<td>ICC (CI 95%)</td>
<td>ICC (CI 95%)</td>
</tr>
<tr>
<td>Longitudinal strain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS</td>
<td>0.914 (0.796-0.965)</td>
<td>0.714 (0.406-0.876)</td>
<td>0.634 (0.277-0.837)</td>
</tr>
<tr>
<td>Regional values</td>
<td>0.799 (0.743-0.844)</td>
<td>0.402 (0.279-0.513)</td>
<td>0.516 (0.406-0.511)</td>
</tr>
<tr>
<td>Segmental</td>
<td>0.747 (0.701-0.768)</td>
<td>0.621 (0.477-0.588)</td>
<td>0.402 (0.318-0.480)</td>
</tr>
<tr>
<td>Longitudinal strain rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global value</td>
<td>0.478 (0.056-0.754)</td>
<td>0.252 (0.000-0.617)</td>
<td>0.426 (0.000-0.725)</td>
</tr>
<tr>
<td>Regional values</td>
<td>0.454 (0.366-0.558)</td>
<td>0.255 (0.120-0.380)</td>
<td>0.273 (0.140-0.397)</td>
</tr>
<tr>
<td>Segmental</td>
<td>0.456 (0.377-0.529)</td>
<td>0.466 (0.366-0.520)</td>
<td>0.251 (0.159-0.339)</td>
</tr>
<tr>
<td>Circumferential strain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS</td>
<td>0.840 (0.639-0.953)</td>
<td>0.641 (0.289-0.841)</td>
<td>0.711 (0.402-0.875)</td>
</tr>
<tr>
<td>Regional values</td>
<td>0.789 (0.727-0.839)</td>
<td>0.627 (0.530-0.708)</td>
<td>0.721 (0.655-0.792)</td>
</tr>
<tr>
<td>Segmental</td>
<td>0.711 (0.652-0.761)</td>
<td>0.709 (0.550-0.760)</td>
<td>0.621 (0.548-0.684)</td>
</tr>
<tr>
<td>Circumferential strain rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global value</td>
<td>0.913 (0.793-0.965)</td>
<td>0.028 (0.000-0.456)</td>
<td>0.759 (0.458-0.897)</td>
</tr>
<tr>
<td>Regional values</td>
<td>0.702 (0.520-0.769)</td>
<td>0.265 (0.124-0.396)</td>
<td>0.638 (0.543-0.717)</td>
</tr>
<tr>
<td>Segmental</td>
<td>0.563 (0.483-0.633)</td>
<td>0.561 (0.480-0.631)</td>
<td>0.515 (0.429-0.591)</td>
</tr>
<tr>
<td>Rotation measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>0.750 (0.470-0.893)</td>
<td>0.593 (0.215-0.817)</td>
<td>0.178 (0.000-0.567)</td>
</tr>
<tr>
<td>Apical</td>
<td>0.622 (0.321-0.851)</td>
<td>0.405 (0.000-0.734)</td>
<td>0.490 (0.072-0.761)</td>
</tr>
<tr>
<td>Twist</td>
<td>0.734 (0.441-0.885)</td>
<td>0.000 (0.000-0.388)</td>
<td>0.522 (0.116-0.779)</td>
</tr>
<tr>
<td>ABRT</td>
<td>0.713 (0.405-0.876)</td>
<td>0.666 (0.315-0.856)</td>
<td>0.484 (0.065-0.758)</td>
</tr>
<tr>
<td>AART</td>
<td>0.678 (0.515-0.928)</td>
<td>0.481 (0.050-0.756)</td>
<td>0.578 (0.193-0.808)</td>
</tr>
</tbody>
</table>

ICC, intraclass correlation; CI, confidence interval; GLS, global longitudinal strain; GCS, global circumferential strain; Twist, calculated as difference between basal and apical rotation; ABRT and AART, time of maximal rotation in the basal and apical segments adjusted to the heart rate.
Figure 15. Bland Altman plots for the cyclic variation of the integrated back scatter. Figures in page 74 present septal and in page 75 posterior measurements.
The upper rows show intraobserver variability, the middle rows show test-retest results, and the lowest rows show interobserver variability.
5.8 Changes in ECG and cardiac biomarkers after RT

Typical RT-induced ECG-changes are shown in Figure 16. T-wave flattening or inversions in the precordial leads V1-4 and in the standard leads aVL and I were the most common ECG findings. T-wave inversions were more prevalent in patients with left-sided breast cancer (39 patients) than in patients with right-sided breast cancer (5 patients) (p=0.003). The distribution of the changes in T-waves is shown in Figure 17.

Figure 17. Distribution of the T-wave changes after RT. Figure A illustrates T-wave changes in patients with left-sided breast cancer with largest changes in precordial leads V2-V4. Figure B presents patients with right-sided breast cancer with no significant T-wave changes in the ECG. Courtesy from Heini Huhtala and Konsta Keski-Pukkila
Figure 16. RT induced ECG changes in a study patient. The baseline recording is shown on the left side, the control on the right side. Subtle flattening of the T-wave can be observed in I and aVL leads, new T-wave inversions in V2-4 leads.
RT-induced changes in cardiac biomarkers are displayed in Table 7. The levels of hsTnt were below clinical significance in most of the patients. The highest baseline value and the highest value after RT were 33 ng/l and 20 ng/l, respectively. A greater than 30% rise from the baseline value was observed in fourteen (23%) patients with left-sided breast cancer and in one (5%) patient with right-sided breast cancer (p<0.001). The level of proBNP was above the reference value in three (7%) patients with left-sided breast cancer and in one (5%) patient with right-sided breast cancer (p=0.325). A more than 30% increase from the baseline value was observed in 32 (53%) patients with left-sided breast cancer and in 4 (20%) patients with right-sided breast cancer (p=0.014).

Table 7. Cardiac biomarkers at baseline and after RT

<table>
<thead>
<tr>
<th></th>
<th>Left-sided breast cancer</th>
<th></th>
<th>Right-sided breast cancer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=60</td>
<td>After RT</td>
<td>p</td>
<td>N=20</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td></td>
<td></td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td>Md [Q₁, Q₃]</td>
<td>Md [Q₁, Q₃]</td>
<td></td>
<td>Md [Q₁, Q₃]</td>
</tr>
<tr>
<td>proBNP (ng/l)</td>
<td>59 [38, 125]</td>
<td>88 [50, 161]</td>
<td><0.001</td>
<td>95 [63, 130]</td>
</tr>
</tbody>
</table>

Md, median; hsTnt, high sensitivity troponin T; proBNP, pro-B type natriuretic protein.
6. DISCUSSION

RT caused early changes in echocardiography, cardiac biomarkers and ECG in most of the eighty patients with early-stage breast cancer included in our study. There was a close association of the distribution and magnitude of these changes with the total heart dose and localisation of the RT fields.

6.1 Cardiac changes after RT

6.1.1 Structural changes in echocardiography after RT

RT induced multiple changes in the LV including increased myocardial mass, thickening of LV septal and posterior walls with a simultaneous decline in LV cavity diameters in 2D acquisition (I, II, III, IV). Consistent with these changes the myocardial mass increased and the LV volume was reduced also in the 3D images (II, III, IV). As the control study was executed within a few days after the last RT, it is possible that part of the changes was caused by the RT-induced early inflammatory process. An inflammatory process with extravasation and tissue swelling could explain the increase in LV wall thickness, the decrease in LV volumes and the increase in myocardial mass.

Tissue reflectivity increased in the patients with left-sided breast cancer after RT (II). Increased myocardial reflectivity is traditionally considered to reflect increased tissue fibrosis, especially collagen content (200, 201, 203, 226). Even though the fibrotic process seems to be launched at the very early phase with complex cascades involved, it is uncertain whether the changes in tissue reflectivity among our patients can be explained at any extend by the actual increase in tissue fibrosis. The results of the studies on patients with hypertrophic cardiomyopathy and iron or copper accumulation indicate that the increase in myocardial reflectivity may also be caused factors other than collagen, such as fibre disarray (195, 207, 215, 216). In addition, there are studies showing that cIBS values can increase acutely or be reversed (194, 214, 225, 227-229), which imply that f. ex. inflammatory tissue responses might contribute to tissue reflectivity. The exact mechanism causing the increase in the cIBS values of the patients with left-sided breast cancer remains to be established since endomyocardial biopsies were not acquired due to ethical issues. Considering transient reflectivity changes in other patient populations, an early inflammatory RT-induced process is a potential explanation to the changes seen in tissue reflectivity after RT among our patient population. Concomitant changes in LV morphology, which suggest the presence of tissue swelling, support this theory.
6.1.2 Functional changes in echocardiography after RT

RT caused changes both in LV diastolic and systolic function. There were several changes in the conventional diastology. The mitral E-wave declined, and IVRT and mitral dt were prolonged (II, III, IV). The mitral inflow a-wave, Ea-ratio or Ee’-ratio were unchanged indicating that atrial function and the left-sided filling pressure were unchanged (II, III, IV). The changes in mitral E-wave, dt and IVRT indicate prolonged relaxation and would be a logical consequence of the changes seen in the LV walls. A swollen myocardium would be stiffer, and could explain changes in relaxation with sparing of the atrial component.

Although the conventional LV systolic parameters remained unchanged after RT, there were significant changes in the GLS and the CVIBS (studies III and IV). GLS has shown to be a sensitive predictor of early cardiotoxicity and myocardial remodeling, with important prognostic value over a wide range of clinical scenarios (239, 260, 261, 271-287). Hence, it is tempting to speculate that the changes in GLS in our patient population could be clinically significant early signs of RT-induced cardiac injury. Furthermore, the septal and posterior CVIBS declined in patients who received more than a 2 Gy mean heart radiation dose. Although the use of the CVIBS as a clinical tool is controversial, it seems to be a sensitive marker of early systolic change in cardiac ischaemia, reperfusion, myocardial viability and hibernation (197, 198, 212, 218, 230). It may also be useful in detecting preclinical myocardial changes and predicting adverse events in several diseases (191, 204, 205, 215, 219, 220, 222, 223). In concordance with previous studies, we demonstrated that the RT-induced subclinical changes can be detected by advanced echocardiographic techniques such as GLS and CVIBS analysis, even in patients without changes in LVEF (204, 215, 219, 220, 239-242).

In addition to the changes in LV function, there were also changes in the right side of the heart. The average decline in TAPSE was approximately 2 mm after RT and a ≥4 mm decline was detected in 39% of the patients with left-sided breast cancer (I). Other RV parameters remained unchanged. However, in many pathologies influencing RV longitudinal function, such as RV pressure overload or ageing, circumferential contraction increases (321-323). Such compensation was not observed in our patients, and it could be speculated that this combination of reduced TAPSE without a simultaneous increase in circumferential function could imply more serious damages than that judged by a TAPSE decline alone. Furthermore, in study II, the changes in RV tissue reflectivity seemed to be associated with the decline in TAPSE. The association
of simultaneous structural and functional changes is a stronger implication of RT-induced changes than a single sporadic finding.

6.1.3 Influence of breast cancer laterality, RT dose and fields on cardiac changes

The heart radiation doses are higher in patients with left-sided than those with right-sided breast cancer as the heart is located on the left side of the thorax. In cohort studies, patients with left-sided breast cancer have a 1.3-1.6-fold relative risk for cardiovascular complications 10 years after RT compared to patients with right-sided breast cancer (58, 59, 113, 114). Hence, breast cancer laterality has a major influence on cardiac radiation exposure. In our studies, patients with left-sided breast cancer had a higher prevalence of ECG changes, cardiac biomarker increase and alterations in echocardiography. The prevalence of T-wave changes was significantly higher in patients with left-sided versus right-sided breast cancer (II, IV). In addition, there was a small but statistically significant increase in cardiac biomarker levels in patients with left-sided but not those with right-sided breast cancer (II, IV).

GLS declined in patients with left-sided breast cancer while patients with right-sided breast cancer did not show significant deterioration in the GLS (IV). The analysis of the CVIBS showed that a mean heart dose over 2 Gy produced a significantly higher deterioration in the CVIBS in the septum than in patients receiving under 2 Gy (III). TAPSE declined significantly in patients with left-sided breast cancer while in patients with right-sided breast cancer the changes were not statistically significant (IV). Furthermore, the changes in diastology and the changes in LV morphology were generally more prevalent in patients with left-sided breast cancer (II, IV).

In addition to the global changes, there were regional differences in ECG, in the CVIBS, the cIBS and in the STE analysis. T-wave inversions on the ECGs were most prevalent in the precordial anterior leads. The changes in CVIBS and cIBS were more pronounced in the anterior fields (RV and septum for cIBS and septum over the posterior wall in the CVIBS) which is logical considering the RT fields (II, III). In regional STE analysis, RT caused changes in the apical area in patients with left-sided breast cancer and in the antero-basal segments in patients with right-sided breast cancer as expected by the differences in the localisation of the RT fields (IV). The apical decline in patients with left-sided breast cancer was associated with delayed apical rotation and the basal changes in patients with right-sided breast cancer were associated with prolonged basal rotation.
A reduction in regional function seemed to be reflected in the corresponding rotational movement.

Overall, RT induced several changes in echocardiography, cardiac biomarkers and in ECG corresponding to the RT doses and the field used. Our findings in ECG and in myocardial deformation imaging (IBS and STE) imply an association of the RT doses and fields with myocardial injury.

6.1.4 External factors influencing cardiac changes after RT

In the multivariable analyses the concurrent use of AI (III, IV), BMI (III) and smoking status (III) were independently associated with the echocardiographic changes. Correlation analysis also showed an association between the patients’ medication (I) and the cardiac changes after RT.

One-third of our patients used AI as an adjuvant therapy. Patients using AI had lower baseline septal CVIBS values and an augmented CVIBS decline after RT when the mean cardiac dose exceeded 2 Gy (III). Also, the concurrent use of AI had an independent association with the decline of the GLS (IV). Aromatase-enzyme regulates the final pathway of the oestrogen metabolism. When this pathway is blocked by AI, the tissue levels of oestrogen declines, and oestrogen-induced growth stimulation in the cancer tissue is reduced. However, oestrogen seems to have a positive effect on cardiac function and recovery (324, 325). The use of AI during RT sensitises the heart to the effects of RT (326, 327). Our study was not designed nor powered to explore the effects of different medical treatments, but the negative influence of AI on several parameters and plausible mechanisms explaining the association could imply a clinically significant phenomenon that should be studied in the future.

BMI, smoking status and the patients’ medication also had an association with the changes in echocardiography parameters. Each unit of BMI was associated with a 0.24 dB decrease in the septal CVIBS after RT (III). It has been speculated that obesity causes more frequent deep setup errors and thereby higher cardiac radiation doses (328). Whether this was the case in our patients is unclear, but such a mechanism would be a logical explanation for the association between higher BMI and the larger decrease in the septal CVIBS. Surprisingly, non-smokers had a stronger deterioration of the posterior CVIBS (III). It has been shown that lower tissue oxygen levels reduce the effect of radiation (40, 329, 330), and may also alleviate the adverse effects in healthy
tissue. Furthermore, the use of levothyroxine for hypothyreosis, the use of ACE/ARBs and the use of diuretics protected patients from a decline in TAPSE (I). Thyroid function plays an important role in the tissue effects of radiation. Lower levels of triiodothyronine were associated with more severe and prolonged enteritis after pelvic RT (331). On the other hand, several rodent studies have shown that thyroid hormone supplementation in diabetics or after acute myocardial infarction has had a positive effect on cardiac function (332-334). In our study, hypothyreosis was defined as a previously diagnosed disease with levothyroxine substitution. Therefore, a similar mechanism could have explained the connection between the seemingly protective effect of hypothyreosis and the lesser decline in TAPSE.

The results of the experimental studies show that the adverse effects of radiation can be alleviated in the heart, lungs, bowel, kidneys, skin and neurological tissue by the use of ACE/ARBs (138, 139, 141-147, 149-151, 335). There are no randomised controlled studies on the protective effect of ACE/ARBs in humans receiving RT. Still, our finding of ACE/ARBs seemingly protective effect against RT-induced TAPSE decline (I) is interesting considering the strong evidence from the animal studies. The association of the use of diuretics and the smaller reduction in TAPSE (I) could be explained by less severe inflammatory tissue swelling due to the use of diuretics, but this is merely speculative and is without any solid support from clinical studies.

6.2 Clinical implication

RIHD develops late, years to decades after radiation exposure. The fibrotic process launched at the initial phase after RT seems to produce progressive tissue changes, (4, 11, 17, 59, 63, 65, 83, 85, 86, 91, 98, 105, 110-114), and clinically significant CAD, valvular lesions, constriction, diastolic dysfunction and restrictive heart failure along with conduction and rhythm disturbances and even constriction after several years of latency (4, 8-11, 59, 65, 68, 70, 72-81, 83, 85-87). Advances in RT techniques have reduced the cardiac exposure (17), but due to relatively short follow-up time the full benefit cannot be estimated yet and mandate further analysis with time (4). Bovelli stated that the ‘detection of cardiac injury is crucial since it may facilitate early therapeutic measures’ (9) and Cuomo complied that ‘the cardiac morbidity and mortality associated with RT can be reduced if treated early, which justifies the need for screening and early detection of RIHD’ (10). Therefore, the follow-up and early detection of adverse cardiac changes are important. Early subclinical changes, such as those observed in our study, indicate that RT has a cardiac impact, and may subsequently increase the risk for late sequelae.
TAPSE, GLS and hsTnt all have strong prognostic importance over a wide variety of diseases and even in general population (183-186, 239, 260, 261, 265-287, 336-344). TAPSE is an independent predictor of death, heart transplantation, prolonged hospitalisation and adverse events in patients with heart failure, constriction, acute and chronic states of pulmonary hypertension and in patients with valvular interventions with a range from 14 to 18 mm as a threshold for poorer prognosis (337-344). In a meta-analysis of pulmonary hypertension patients, a 5 mm drop of TAPSE was associated with a 1.72 hazard ratio for mortality or cardiac transplantation (342). Forfia et al determined, that each 1 mm decrease in TAPSE in pulmonary hypertension patients increase mortality by 17% (344). A greater than 4 mm decline in TAPSE was observed in 19 (39%) patients with left-sided breast cancer after RT (I), which may have prognostic significance.

Reduced GLS is a predictor of adverse remodelling and post-operative outcome (260, 261, 265-273), and it has been associated with increased mortality and overall major adverse cardiac events (239, 274-287). Furthermore, a reduction in GLS after chemotherapy was a strong predictor of a subsequent decline in LVEF and cardiotoxicity (260, 262-264).

Elevated troponin levels have been associated with poor prognosis in patients with cardiac and non-cardiac diseases, and even in community based screening (183-186, 336). The combination of GLS and elevated troponins have even stronger predictive power in patients receiving cardiotoxic chemotherapy (12). In our study, GLS significantly declined in patients with left-sided breast cancer, and almost one-third of them had a decline over 10% accompanied by a statistically significant increase in hsTnt.

In conclusion, the fact, that our patients displayed changes in all of these important prognostic measurements, could be considered clinically significant although a long-term follow-up is needed to confirm this hypothesis.
6.3 Future considerations

6.3.1 Patient screening and RT treatment protocols

Awareness of the adverse effects of RT has pursued to continuous evolution towards safer treatment protocols. With 3D computed treatment planning, the healthy tissue burden has been significantly reduced without compromising the treatment effects. DIHB and IMRT techniques and different patient positioning have been used to reduce heart radiation exposure during RT in the chest. Whether the contemporary lower heart radiation doses are safe without late increase of RIHD, is uncertain. Even a small exposure seems to increase the risk for RIHD, and there is currently no known safe threshold (60). To continue to improve the safety of the treatment protocols, the long latency of RIHD is problematic. Therefore, the early subclinical changes induced by RT could be used as surrogate markers for the RT impact. The results of our study and those of others could be used to guide the further improvements of the RT protocols.

On the other hand, the individual risk for late cardiac sequelae varies. It has been estimated that only 20% can be explained by the radiation exposure and known risk factors alone (6). The pre-existence of cardiac diseases and risk factors for it, roughly double the patients’ vulnerability to RT (10). Genetic syndromes affecting DNA repair make individuals affected extremely vulnerable to RT, and even small doses have been lethal (42). It has been speculated, that a genetic variation in other genes could explain some of the differences in RT effects between individuals (6). Such differences cannot currently be predefined by testing, and therefore, the adverse cardiac effects of chest RT remain unpredictable to some extent on an individual level. The extent and severity of the early subclinical changes could identify individuals with stronger RT impact. This could be used in the future to guide follow-up and perhaps cardioprotective procedures. A follow-up protocol of a large patient population, as currently suggested (8, 11), would be more cost-efficient if it could be targeted to individuals with increased risk.

Currently, cardioprotection consists of measures of the RT, but several other alleviating methods are being investigated (10, 57). In addition to the RT protocols, concurrent treatment with cardiotoxic chemotherapy increases the cumulative cardiac risk. So far, the evidence of the early subclinical cardiac changes after RT have no place in guiding patient treatment, but potential for such guidelines could exist in case of easily usable and reliable markers of cardiac involvement. Several of our results could fulfil the criteria for such. TAPSE is a well-validated, easily acquired measurement used in daily clinical
practice and with prognostic importance over wide variety of diseases (337-344). GLS is a novel measurement, but with increasing evidence of being an early, sensitive measurement with acceptable variability and good prognostic importance (12, 233, 260, 261, 265-287, 302, 304-314). These measurements together with the changes in troponins could be suitable in the clinical use in this context in the future.

6.3.2 Long-term follow-up

The awareness of the RT-induced late sequelae has led to recommendations of follow-up protocol for the patients with RT in the chest region (8, 11). In 2013, it was suggested that these patients should be followed-up with non-invasive testing for CAD ten years after the treatment, or earlier if the patient has multiple risk factors. Other examinations are indicated when the patients show symptoms or signs suggesting adverse RT-induced changes (11). In the Cardio-oncology position paper by the European Society of Cardiology in 2016, careful follow-up was recommended only to patients who had received mediastinal RT starting five years post-RT (8). Our contribution to this body of knowledge was to elucidate some of the early cardiac changes and their localisation. The current knowledge of the late cardiac effects mostly originates from large cohort studies that used now out-dated protocols, and the more detailed knowledge of the actual nature and localisation of the initial changes might help to predict the mid-term and late changes. In theory, our findings could help identify patients with more pronounced initial changes, and help guide in the search for mid-term subclinical sequelae. In addition, our study points-out new parameters that might be practical in the follow-up of this patient population.

6.3.3 Other research methods to study RT-induced changes

Studies with other methods would deepen and widen the knowledge regarding the early RT-induced changes in the heart. A myocardial biopsy would shed light on the exact mechanism of the tissue changes, but as it carries a risk of serious complications in otherwise healthy patients, it will not be ethically justifiable. CMR is excellent at differentiating tissue properties. The high cost and poor availability limit its use in the clinical scenario in this patient population. In addition, its ability to detect diffuse fibrosis, such as fibrosis after RT, has been limited. However, there are new techniques that may overcome this limitation and a comparison between our current findings with CMR would be a valuable asset (345-347). Finally, there are several types of biomarkers that reflect different phases in the fibrosis formation and in the cascades leading to it.
The analysis of such biomarkers would provide additional perspectives into the process initiated by tissue radiation. The follow-up of this patient population is currently ongoing, and the use of these complementary methods is under consideration.

6.4 Strengths and limitations of the study

There are clear limitations of this study. The study population was rather small and there was an unequal distribution of left-sided and right-sided breast cancer patients. However, the very short-term follow-up was the biggest limitation of this study - the end-points were surrogate changes in echocardiography, biomarkers and ECG. Whether they have any clinical significance will be revealed in the planned 12-year follow-up of this patient population. In addition, the IBS technique lacks its validation in the clinical setting even though it seems to be a relatively easily usable tool with prognostic significance in studies on different cardiac diseases. Due to its status as an exclusive scientific tool, there are no normal values available, nor is there robust data of what can be considered to be an abnormal response. In addition, even though TAPSE is a central parameter of the RV function, the information derived from it concerning RV function is limited and shall be supplemented with more sophisticated methods later on. Finally, the high variability and poor repeatability reduced the clinical value of some of the measurements, e.g. the SR values in the STE analysis.

There were also clear strengths in this study. All of the echocardiography acquisitions were performed by a single person with a long experience in echocardiography and with a ‘Certification for Adult Transthoracic Echocardiography’ awarded by the European Association of Echocardiography/ European Society of Cardiology. Furthermore, the equipment used was always the same. These facts ensured unique standardised conditions and excluded the intervender and interperson variation, which increased the reliability of the results. Even though the results were surrogate end-points in echocardiography, ECG and in cardiac biomarkers, the changes found were not sporadic changes here and there, but clusters of changes in parameters illustrating changes in similar things or functions. These clusters matched with each other and were logical considering the RT fields and doses. Finally, the exclusion criteria were not too strict to limit the patient population to individuals with exceptionally good echocardiography acquisition properties. Rather, the study population closely resembled patients we see in the daily clinical practice – ladies in their sixties, in general little chubby and some with severe obesity, and some with limited windows. Such an appearance of real life data can
be considered as a strength, but of course keeping in mind the exclusion criteria otherwise when interpolating these results.
7. SUMMARY AND CONCLUSIONS

The results of our study demonstrated that modern conformal RT for early-stage breast cancer induced echocardiographically detectable structural and functional changes in most of the patients.

- These changes were associated with the radiation dose and fields, and they were more obvious in patients with left-sided versus right-sided breast cancer.
- The novel finding was that RT induced negative changes in TAPSE, cIBS, CVIBS measurements and that it induced regional differences in the STE measurements in left-sided versus right-sided breast cancer patients.
- The changes in echocardiography were accompanied by abnormalities in the ECG and cardiac biomarkers.
- TAPSE, GLS and hsTnt might be feasible tools for the screening of RT-induced adverse cardiac changes.
8. ACKNOWLEDGEMENTS

This study was conducted at the Department of Cardiology, Heart Hospital, Tampere University Hospital and School of Medicine, Tampere University in collaboration with the Department of Oncology, Tampere University Hospital.

This thesis is a result of consecutive major contributors during my professional life, that one by one have led to this exciting pathway culminating in this thesis. First I would like to thank Johnny Vegsundvåg. I consider myself very fortunate to have been able to work with him in Ålesund, Norway from 2001 to 2006. It was like magic watching him do echoes, and with his natural teaching skills he managed to pass on some of his knowledge to me, too. I shall always be grateful to him and remember the years in Norway with warm feelings.

Secondly, Pekka Raatikainen, my supervisor, is the reason why I was converted from pure blooded clinician into a researcher. Pekka must have seen a potential in me when he hooked me up with this project. Through these years, he provided a perfect combination of trust and support, all in the right places. I consider myself privilidged to have Pekka as my supervisor, colleague, and a friend and I’m looking forward to continue to work with him in the years to come.

The third, and at least as important part in this process, are our research group oncologists Tanja Skyttä and Pirkko-Liisa Kellokumpu-Lehtinen. I admire Tanja for the elegance in everything she does. There are numerous situations where things smoothly glided into right direction by the smallest things she did. Also Pirkko has a special place in my heart. She has always been encouraging and her believe in this project and in me has been invaluable. Our regular meetings were always warm and frictionless, the responses immediate and it has been easy to be involved in the active research environment created by Tanja and Pirkko. Honestly, I think that every researcher should have these kind of people in their group and this kind of environment to be nourished to be a researcher. I’m glad that our journey continues far beyond this dissertation and we will have many meetings together in the years to come.
However, the cornerstone in all my activities in this project and in other professional activities, have been the research nurses in the Heart Hospital, Virpi Palomäki, Hanna-Leena Näppilä and Kati Helleharju. Nothing has ever been a problem or impossible to get through with the help of You. You have carried out the logistics of this study, lightened the burden of research byrocracy for me and taken care that I’m in the right place at the right time. But Your value to me goes far beyond the practicalities – to know You and to work with You makes life better and I’m frankly proud to say that I know You.

I would like to thank Vesa Virtanen and Heart Center Co for believing in this process, and for affording me the facilities and opportunities for free to start this study in 2011 to 2012. Without this contribution and support this study, and this dissertation, would never have seen the light.

I would like to express my gratitude to all the personnel in the cardiological department, both in the out-patient clinic and in the wards, for the flexibility and patience that all the extra nuinance my project must have caused. I also thank all the people that have participated as validation objects in our study, and Marko Virtanen and Tuija Poutanen for carrying out the validation measurements. Furthermore, I would like to offer my special thanks to Kjell Nikus and Saima Vikman, the members of the Heart Hospital’s research team, for their important role in this project. We have had many flourishing discussions of this and many other projects and research in general with Kjell, and his guidance and help have been invaluable to me. Saima, the leader of the research team, though not directly involved with this study, has had a major contribution for its continuation further on. I’m indebted to her for this, and also for having been a good colleague whom I value and look up to. Furthermore, I’m grateful for all the co-authors and the statisticians, Tiina Luukkaala and Heini Huhtala, who have helped me in processing all the data derived from this study, and in making me see the light in the world of statistics.

I’m also indebted to all the women participating in this study.
I owe my gratitude also to Helena Hänninen, Jyri Lommi and all the others in Meilahti Hospital, not only for the friendly welcoming, but also for understanding the almost endless need for free from work to finalise this thesis and to carry on with family life.

My sincerest thanks are due to the official reviewers of the dissertation, docent Marja Hedman and docent Tiina Ojala for taking time to help to improve this thesis by their careful evaluation and constructive comments of the manuscript. My warmest thanks goes to Antti Saraste, opponent of this thesis. I’m very honored to have Antti as my opponent knowing his many excuisite skills in imagining, cardiology and science.

A thesis like this is an end-product of massive amount of labour, long hours throughout the years and dedication even in times of tiredness and disbelief. In addition to encouragement and support from within the study group, and from friends and relatives, it has been of utmost important to have financial support from several non-profit communities to be able to take free from job to finalise the analysis and to finish the papers. Therefore, my sincerest thanks goes to Paavo and Eila Salonen legacy, to The Finnish Medical Foundation, to Ida Montin Fund, to The Finnish Cultural Foundation, Pirkanmaa Regional Fund, to The Finnish Foundation for Cardiovascular Research, to Finnish Society for Oncology, to Finnish-Norwegian Medical Foundation, to Pirkanmaa Cancer Society and to Aarne and Aili Turunen Foundation. In addition, Vesa Laiho from Philips has been a precious support in the technical aspects for the off-line analysis.

Next I want to pay tribute to my friends, relatives and family. Thank you for bringing joy and support in my life, for dragging me out of the world of science and work and for giving prespective in things. Of course, my parents, Hilkka and Seppo created the foundation for all of this. Their encouragement for studying and their support guided this pathway and had eased my way. I owe my thanks to my brother Kari, and my babybrother Tuomas and his spouse Jenna, who have managed to bring new sunshine into our lives, Antton. I would like to thank also my mother in law, Ritva, for all the support she has provided during these years. She has taken care of our children and rabbits whenever needed, without this would many things have been difficult.
My deepest and sincerest thanks goes to my husband, Timo Julkunen. Your unconditional loyalty, love, and support has covered all parts of my life now through more than half of our lives. You have encouraged me in everything, enabled all my dreams and needs, and stood by me even when I’m impossible. We have started to get wrinkled together, and I couldn’t imagine a better life. This thesis is a tribute to You, too, since everything we have, we share. Finally, and most importantly, I would like to declare (behind computer desk – which our children probably now think, is an ingrown part of me) the utmost meaning of Laura and Joonas to me. Your existence gives meaning to everything and I love You with all my heart.

Tampere, 9th April 2017

[Signature]

Immu (alias Suvi Tuohinen)
9. REFERENCES

168. Ylanen K, Poutanen T, Savikurki-Heikkila P, Rinta-Kiikka I, Eerola A, Vettenranta K. Cardiac magnetic resonance imaging in the evaluation of the late effects of

221. Di Bello V, Giorgi D, Talini E, Dell'Omo G, Palagi C, Romano MF, et al. Incremental value of ultrasonic tissue characterization (backscatter) in the evaluation of

229. Wong CY, Byrne NM, O'Moore-Sullivan T, Hills AP, Prins JB, Marwick TH. Effect of weight loss due to lifestyle intervention on subclinical cardiovascular dysfunction in obesity (body mass index >30 kg/m2). Am J Cardiol 2006;98:1593-1598.

302. Roes SD, Mollema SA, Lamb HJ, van der Wall EE, de Roos A, Bax JJ. Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast-enhanced magnetic resonance imaging. Am J Cardiol 2009;104:312-317.

334. Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV. Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 2008;103:308-318.

ORIGINAL COMMUNICATIONS

Anticancer Research, 35:2141-2147 © 2015, reprinted with permission from International Institute of Anticancer Research (I).

International Journal of Cardiovascular Imaging, 32:767-76 ©2016, reprinted with permission from Springer Science and Business Media (II).

Early Effects of Adjuvant Breast Cancer Radiotherapy on Right Ventricular Systolic and Diastolic Function

SUVI SIRKKU TUOHINEN1*, TANJA SKYTTÄ2*, VESA VIRTANEN1, TIINA LUUKKAALA3, PIRKKO-LIISA KELLOKUMPU-LEHTINEN2 and PEKKA RAATIKAINEN4

1Heart Center Co., Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland;
2Department of Oncology, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland;
3Science Center Pirkanmaa Hospital District and School of Health Sciences, University of Tampere, Tampere, Finland;
4Department of Medicine, Central Finland Health Care District and University of Eastern Finland, Jyväskylä, Finland

Abstract. Aim: Reduced right ventricular (RV) systolic function correlates with poor prognosis in several heart diseases. The aim of this prospective single-Center study was to investigate whether conformal three-dimensional (3D) breast cancer radiotherapy impairs RV function. Patients and Methods: Forty-nine patients with early-stage left-sided breast cancer underwent comprehensive two-dimensional (2D) echocardiography before and after radiotherapy. RV function was evaluated with tricuspid annular plane systolic excursion (TAPSE), pulsed tissue Doppler peak velocity at the lateral RV wall (S’) and RV and venous flow analysis. Results: Radiotherapy reduced TAPSE from 24.5±4.0 mm to 22.4±3.9 mm (p<0.001), S’ from 12.7±3.1 m/s to 12.2±2.7 m/s (p=0.11) and pulmonary flow velocity time integral (VTI) from 16.6±3.1 cm to 15.9±2.3 cm (p=0.07), respectively. These changes were unrelated to changes in LV function. Conclusion: Modern radiotherapy reduced RV systolic function. As a readily-available and sensitive measurement, TAPSE is as a practical tool for detection of radiotherapy-induced cardiac changes.

Breast cancer is the most common cancer in women (1). Improved diagnostics and adjuvant therapies have increased breast cancer survival rates (2). On the other hand, cardiac exposure from adjuvant radiotherapy (RT) has been shown to cause adverse cardiovascular effects. The late sequel includes left ventricular (LV) dysfunction, valvular heart disease and coronary artery disease (3-6). It is important for cardiologists and oncologists to recognize these adverse effects and find means to limit late co-morbidities.

Several investigators have demonstrated that the reduction of right ventricular (RV) systolic performance correlates with poor prognosis across a broad spectrum of diseases (7-9). Despite the important prognostic role of RV function, no prior study has systematically evaluated the effects of breast cancer RT on RV function. The aim of this prospective single-Center study was to investigate whether modern conformal three-dimensional (3D) breast cancer RT impairs RV systolic and diastolic function in the early phase.

Patients and Methods

Patient selection. Forty-nine eligible female patients with an early left-sided breast cancer who received postoperative adjuvant conformal RT without concomitant chemotherapy were included in this single-Center, prospective study. The study was conducted from July 2011 to February 2013. The exclusion criteria were age under 18 years or over 80 years, other malignancy, pregnancy or breast feeding, acute myocardial infarction within 6 months, symptomatic heart failure (NYHA 3-4), dialysis, permanent anti-coagulation and severe psychiatric disorder. To optimize echocardiography image quality, patients with atrial fibrillation, left bundle branch block (LBBB), pacemaker therapy and severe lung disease were excluded. The institutional board of ethics approved the protocol and all participants signed informed consent before enrollment in the study.

Radiotherapy. All patients underwent 3D computer tomography (CT)-based treatment planning (Philips Big Bore CT; Philips Medical Systems, Madison, WI, USA) in a supine position on a
Statistical analysis. Means and standard deviations were given for normally-distributed variables and medians and ranges for continuous variables with skewed distributions. Differences between measurements were tested by the paired samples t-test or by the Wilcoxon signed-rank test. The Spearman correlation was used to test the linear associations between variables. The associations between TAPSE and other variables were analyzed by the independent samples Mann-Whitney U test (continuous variables) or by the Fisher’s exact test (categorical variables). All tests were two-sided and \(p \) values \(<0.05 \) were considered statistically significant. Statistical analyses were performed using the IBM SPSS (IBM Corp. Released 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.) statistical software package (http://www-01.ibm.com/software/analytics/spss/).

Results

General characteristics. The baseline characteristics of the patients are presented in Table II. The mean age of the population was 63 (range=49–79) years. The most common underlying diseases included hypertension (35%), hypercholesterolemia (16%), hypothyreosis (10%) and diabetes (4%). Twenty-two percent of the patients had no other diseases.
RV echocardiographic measurements. RT caused significant changes in RV systolic function (Table III). TAPSE declined in 67% of the patients. The average reduction was 2.1±3.2 mm ($p<0.001$). A decrease of 4 mm or more was observed in 39% of the patients. There was no correlation between these changes and the cardiac or pulmonary radiation dose, smoking, ECG changes, body mass index (BMI) or underlying disease, other than hypothyreosis. The use of thyroxin ($p=0.03$) and diuretics ($p=0.03$) were associated with smaller TAPSE reduction. Likewise, the use of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) tended to protect against TAPSE decline ($p=0.06$). The reduction in TAPSE was 1.0±4.0 mm and 2.4±3.0 mm ($p=0.22$) among patients using and not using ACEIs/ARBs, respectively.

In keeping with the reduction of TAPSE, the other RV systolic parameters showed a declining tendency, although statistical significance was not reached. S’ declined from 12.7±3.1 to 12.3±2.7 ($p=0.11$) and pulmonary flow VTI decreased from 16.6±3.1 to 15.9±2.3 ($p=0.07$). Isovolumetric velocity (IVV) ($p=0.82$) and acceleration of the IVV did not change ($p=0.43$) (Table III). Neither TAPSE nor any other RV systolic parameter was related to LV systolic or diastolic changes.

The changes in the RV diastolic parameters were less obvious than the systolic parameters. The maximal diameter of the inferior vena cava was 15.7±4.1 mm at baseline and 14.8±3.5 mm after RT ($p=0.12$). Its respiratory variability remained unchanged. There were no significant changes in the tricuspid Ea and Ee’ ratio, whereas the tricuspid inflow E wave showed a slight (48.5±8.5 cm/s vs. 45.6±8.4 cm/s) but not statistically significant reduction ($p=0.10$) (Table III).

Minor tricuspid and pulmonary regurgitation were observed in 94% and 69% of the patients, respectively. The regurgitation was hemodynamically insignificant in all patients and no patient had stenosis in the right-sided heart valves. There were no changes in tricuspid or pulmonary valve status between baseline and control examinations.

LV echocardiographic measurements. At baseline, LV dimensions and function were compatible with patient’s age and underlying disease profile in all participants. RT had no significant effect on LV systolic or diastolic function. However, both the interventricular septum (10.0±1.2 mm vs. 10.3±1.3 mm, $p=0.02$) and the posterior wall (9.7±1.0 mm vs. 10.3±1.2 mm, $p=0.01$) were slightly thicker after RT than at baseline (Table IV).
Six patients had moderate valvular abnormalities at the baseline echocardiography examination. Two of them had been diagnosed before (one with stenosis in aortic bioprosthesis and one with moderate mitral regurgitation) and 4 had a new diagnosis (one with moderate aortic stenosis, two with moderate mitral regurgitation and one with mild aortic regurgitation). There were no changes in aortic or mitral valve status between the baseline and control examinations.

ECG. Patients had sinus rhythm, narrow QRS complex and normal PQ and QT time in all ECG recordings. There were no signs of right atrial or ventricular abnormalities in any recordings. RT caused moderate T-wave alterations in 16 patients (33%). These changes did not correlate to the change in TAPSE.

Discussion

We demonstrated that RV systolic function was reduced in the early phase after modern conformal 3D left-sided breast cancer RT, despite a lack of changes in LV function. This novel finding indicates that measurement of RV function is a sensitive indicator of radiation-induced myocardial injury and an attractive tool for the follow-up of patients after RT.

Table III. Echocardiographic measurements of the right ventricle (N=49).

<table>
<thead>
<tr>
<th></th>
<th>Baseline Measurement after radiotherapy</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SD</td>
<td>Median (range)</td>
</tr>
<tr>
<td>RV basal dimension (mm)</td>
<td>33.7±5.5</td>
<td>33.0 (24.0-44.0)</td>
</tr>
<tr>
<td>TAPSE (mm)</td>
<td>24.5±4.0</td>
<td>24 (16-33)</td>
</tr>
<tr>
<td>S' (cm/s)</td>
<td>12.7±3.1</td>
<td>12.1 (8.9-22.2)</td>
</tr>
<tr>
<td>IVV (cm/s)</td>
<td>13.0±4.8</td>
<td>12.4 (4.9-29.3)</td>
</tr>
<tr>
<td>IVA (cm/s²)</td>
<td>2.8±1.0</td>
<td>2.7 (1.0-5.1)</td>
</tr>
<tr>
<td>Pulmonary peak flow velocity (cm/s)</td>
<td>69.6±14.3</td>
<td>71.0 (46-101)</td>
</tr>
<tr>
<td>Pulmonary flow at (ms)</td>
<td>149.4±33.0</td>
<td>145 (71-239)</td>
</tr>
<tr>
<td>Pulmonary flow VTI (cm)</td>
<td>16.6±3.1</td>
<td>16.6 (10.9-24.4)</td>
</tr>
<tr>
<td>Tricuspid gradient (mmHg)</td>
<td>21.6±5.8</td>
<td>22 (8-34; n=42)</td>
</tr>
<tr>
<td>Tricuspid inflow E velocity (cm/s)</td>
<td>48.5±8.7</td>
<td>48.3 (32.6-66.6)</td>
</tr>
<tr>
<td>Tricuspid inflow a velocity (cm/s)</td>
<td>38.3±8.0</td>
<td>37 (22.7-61.7)</td>
</tr>
<tr>
<td>Tricuspid inflow dt (ms)</td>
<td>236±73</td>
<td>235 (132-444)</td>
</tr>
<tr>
<td>Tricuspid Ea ratio</td>
<td>1.30±0.24</td>
<td>1.26 (0.88-1.85)</td>
</tr>
<tr>
<td>Tricuspid Ee'/ratio</td>
<td>4.2±1.1</td>
<td>4.1 (2.5-7.3)</td>
</tr>
<tr>
<td>IVC maximal diameter (mm)</td>
<td>15.7±4.1</td>
<td>15.9 (1.6-25.9)</td>
</tr>
<tr>
<td>IVC respiration variability (%)†</td>
<td>62.8±15.2</td>
<td>60.2 (30.6-97.7)</td>
</tr>
<tr>
<td>Hepatic vein flow SD ratio‡</td>
<td>1.53±0.46</td>
<td>1.55 (0.9-2.8; n=36)</td>
</tr>
</tbody>
</table>

RV, Right ventricle; TAPSE, tricuspid annular plane systolic excursion; S' and IVV, systolic and isovolumetric velocity of pulsed tissue Doppler derived from the lateral basal RV free wall; IVA, acceleration of the IVV; at, acceleration time; VTI, velocity time integral; dt, decleration time; Ee'/ ratio, ratio between tricuspid inflow E-velocity and pulsed Doppler e' velocity derived from the RV basal free wall; IVC, inferior vena cava; Mean±SD, mean±standard deviation. †Measurable in 83%. ‡Inferior vena cava respiration variability tested with sniffing. §Hepatic vena flow SD ratio calculated as the ratio between the maximal velocities of systolic and diastolic components.
Mechanism of the changes in RV function. The inflammatory reaction due to RT begins within hours (16, 17). The second or latent stage of radiation injury is characterized by reduced capillary density (17, 18). The complex fibrotic cascade is initiated as early as 2 weeks after the onset of RT (17, 19) and the earliest evidence of increased myocardial fibrosis has been observed within 40 days after a single radiation dose (16). Since our patients were exposed to RT for 4-5 weeks, all these mechanisms may contribute to the observed changes. Whether thyroxin or ACEI/ATR medication protects the RV from radiation-induced adverse effects remains to be established in larger clinical studies.

Limitations. Our study population was uniform in many ways, which reduced the confounding effects but also made extrapolation of the results to other groups difficult. Due to the small number of patients, a reliable multivariate analysis of related factors was not possible. Time-consuming magnetic resonance imaging and sophisticated 3D echocardiographic measurements were not used because the main idea was to determine whether the change in RV function could be measured with the tools we use in everyday practice.

Clinical implications of RV functional changes. The most important implication of this study was that the modern 3D conformal RT caused prominent changes in RV function in most of our patients. On the basis of the results of previous studies (3, 4), these changes may progress over time and clinically significant cardiac adverse events may emerge during long-term follow-up. These findings support the consensus statement recommending a comprehensive cardiac evaluation and a long-term follow-up of patients after breast cancer RT (20). According to our data, TAPSE is a more sensitive tool for the detection of the radiation-induced early myocardial deterioration than conventional LV measurements. The result of this and prior studies imply that even small radiation doses may induce myocardial changes (21).
present study, the RV systolic function was impaired, although the mean dose to the RV free wall in our study group was only 6.09±4.74 Gy. Hence, it is important to use techniques that reduce cardiac radiation exposure, e.g. respiratory gating and breath-hold techniques.

Conclusion

Right ventricular systolic function is impaired after breast cancer adjuvant RT. TAPSE is a sensitive and reliable marker of early myocardial injury and can be used as a practical tool to identify patients who would benefit the most from a long-term follow-up.

Acknowledgements

The Authors thank research nurses Virpi Räsinen, Hanna Näppilä and Emmi Vetenranta for their expert assistance during the study. This study was supported by the Pirkanmaa Hospital District, Seppo Nieminen Fund (grant 150613), by Paavo and Eila Salonen Legacy, by Ida Montin Fund and by Finnish Medical Foundation.

References

Detection of radiotherapy-induced myocardial changes by ultrasound tissue characterisation in patients with breast cancer

Suvi Sirkku Tuohinen · Tanja Skytä · Vesa Virtanen · Marko Virtanen · Tiina Luukkaala · Pirkko-Liisa Kellokumpu-Lehtinen · Pekka Raatikainen

Received: 9 October 2015 / Accepted: 8 January 2016 / Published online: 12 January 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Radiotherapy (RT) in the thoracic region is associated with an increased risk of late cardiovascular morbidity and mortality. Ultrasonic tissue characterisation (UTC) is a non-invasive method of identifying changes in myocardial tissue, such as increased fibrosis. The aim of this study was to assess whether UTC can detect early RT-induced myocardial alterations. Seventy-eight eligible patients with early stage breast cancer were evaluated before and immediately after RT. Twenty patients had right-sided and 58 left-sided breast cancer. None received chemotherapy. A comprehensive echocardiographic examination included 3D measurements and UTC of the right ventricular (RV) free wall, ventricular septum and left ventricular (LV) posterior wall. Integrated backscatter calibration was done for the pericardium (cpIBS) and LV cavity (ccIBS). RT for left-sided breast cancer was associated with increased echodensity in the UTC analysis. RV free wall and ventricular septum cpIBS increased from -15.0 ± 7.3 to -13.7 ± 7.9 dB ($p = 0.079$) and from -18.2 ± 5.1 to -16.0 ± 6.4 dB ($p = 0.002$), respectively. Likewise, ccIBS in the RV free wall increased from 20.4 ± 5.9 to 22.1 ± 5.6 dB ($p = 0.046$), and in the LV septum from 17.3 ± 5.2 to 19.8 ± 5.5 dB ($p < 0.001$). In 3D echocardiography, LV mass increased from 102 ± 18 to 107 ± 18 g ($p = 0.005$). Patients receiving RT for right-sided breast cancer did not display these changes. Left-sided RT increased myocardial echodensity, particularly in the structures receiving the highest radiation dose. Considering the progressive nature of the RT induced damage, these early changes may help us with individual risk stratification and serve as a tool for screening.

Keywords Ultrasound tissue characterization · Calibrated integrated backscatter · Breast cancer · Radiotherapy

Introduction

Breast cancer is the most common cancer in females [1]. Advances in diagnostics and treatment have reduced cancer mortality rates. Radiotherapy (RT) in the thoracic region is associated with an increased risk of late cardiovascular morbidity and mortality, which may reduce the treatment-related survival benefit [1–3]. Late radiotherapy-induced cardiac changes include coronary artery disease, left-sided valvular stenosis and regurgitation, disturbances in the conduction system and rarely constrictive pericarditis [1, 2, 4–6]. RT-induced myocardial injury results in fibrosis which has been shown to be related to congestive heart failure and arrhythmias [1, 2, 5, 7, 8]. In most cases these injuries become apparent after several years of latency [1, 2, 4–6], and the early detection of RT-induced myocardial changes is challenging.

Myocardial properties can be studied non-invasively by ultrasound tissue characterisation (UTC) [9–12]. When the
ultrasound beam interacts with tissue components smaller than its wavelength, the signal is scattered and a part of it is directed back toward the probe (backscatter). The intensity of the backscattered signal reflects the acoustic properties of the myocardial tissue, which are related to the collagen content [9, 10, 12, 13]. Our aim was to study whether early myocardial changes after breast cancer RT could be detected by UTC.

Materials and methods

Patient selection

A total of 78 eligible female patients with early breast cancer were included in this single-center, prospective clinical study between July 2011 and November 2013. Fifty-eight of them had left-sided and 20 had right-sided breast cancer. All patients received adjuvant conformal three dimensional (3D) RT after breast cancer resection. None of the patients received cytostatic chemotherapy. The exclusion criteria were: age under 18 years or over 80 years, the presence of other malignancies, pregnancy or breast feeding, recent acute myocardial infarction (in the last 6 months), symptomatic heart failure (NYHA 3–4), dialysis, permanent anticoagulation and severe psychiatric disorders. To optimize echocardiography image quality, patients with atrial fibrillation, left bundle branch block, a permanent pacemaker and severe lung disease were also excluded. The institutional board of ethics approved the protocol and all participants signed informed consent before enrolment in the study.

Radiotherapy

All patients underwent 3D computed tomography (CT; Philips Big Bore City, Philips Medical Systems, Madison, Wisconsin, USA) in a supine position on a breast board with 3 mm-thick slices. Treatment planning and contouring were performed with the Eclipse v.10 system (Varian Medical Systems, Palo Alto, CA, USA). Heart contouring was performed for all patients by the same radiation oncologist (TS; Fig. 1). Treatment doses to the breast cancer region were either 50 Gray (Gy) in 2 Gy fractions (standard) or 42.56 Gy in 2.66 Gy fractions (hypofractionated), according to the local guidelines. An additional boost of 16 Gy in 2 Gy fractions to the tumor bed was used if clinically indicated. The course of treatment took 34 ± 10 days. Doses were calculated using the anisotropic analytical algorithm and dose-volume histograms for different structures were generated for each patient (Table 1).

Electrocardiography (ECG) and biochemical markers

A comprehensive echocardiography and ECG were performed at baseline and at the end of radiotherapy (1 ± 3.9 days from the last radiation dose). High sensitivity troponin T (hsTnt) and pro-B-type natriuretic peptide (proBNP) were measured at each visit.

Echocardiographic examinations

All echocardiographic examinations were performed with a commercially available cardiac ultrasound machine (Philips iE33 ultrasound system, Bothell, Washington, USA) and a 1–5 MHz matrix-array X5-1 transducer by the same cardiologist (SST). The time interval between the baseline and the control study was 39 ± 13 days. All images were acquired at rest with a simultaneous superimposed ECG. Subcostal imaging was performed in a supine position, and other imaging was performed with the patient in the left lateral decubitus position. Doppler recordings were acquired at the end of expiration. A 3D data set was collected as four-cycle full volume imaging.

For two-dimensional UTC analysis, a parasternal long axis view clip was obtained (Fig. 2). No lateral or time gain compensation was used. The raw data was stored in an external hard drive for offline analysis (QLab Philips, Bothell, Washington, USA). The clip was freezed at the frame of mitral valve closure and all measurements were performed at this time point. A square (5 × 5 mm) of region of interest (ROI) was positioned strictly perpendicular to the ultrasound beam in the free wall of the right ventricle (RV), the septum, the posterior wall of the left ventricle (LV) and in the left ventricular outflow tract. A rectangular polygon ROI was positioned in the posterior pericardium. Each myocardial measurement area was carefully positioned to avoid areas with bright endocardial or epicardial specular reflections, as well as very bright or hypoechoic regions within the myocardium. The measurements were repeated three times. An average value was used for calculations. The ROIs were controlled at each measurement point and the positioning was adjusted if necessary. The myocardial backscatter values were calibrated to the cavity and to the pericardial value by subtracting. Integrated backscatter calibration to the cavity was marked as ccIBS and to the pericardium as cpIBS.

Reproducibility of the UTC data

Several methodological tests were executed for the UTC data (Table 2). The repeatability of the measurements was tested in 20 healthy volunteers. In each subject, four acquisitions were taken for offline analysis during the same
day. Intraobserver variability was tested by a blinded reevaluation of the dataset at least 1 month after the initial measurements. An interobserver variability measurement was performed by another cardiologist with echocardiography expertise (MV).

Statistical analysis

Means and standard deviations were given for normally distributed variables, and medians and ranges for continuous variables with skewed distributions. The association between the UTC values and other variables was analysed by independent samples t test or by Mann–Whitney U test if variables were continuous. Categorical variables were analysed by the Pearson Chi square test or by Fisher’s exact test if expected values were too small. Differences between the baseline and after RT values were tested by the paired samples t test or the Wilcoxon signed-rank test. Spearman correlation was used to test the linear associations between the continuous variables. UTC values were also dichotomised into decreased or increased values to describe change from baseline values to after radiotherapy measurements. Increased UTC values were explained by logistic regression analysis, entering all independent variables (age, BMI, mean dose to the heart and left anterior descending coronary artery region, and their percentage of over 45 and 20 Gy radiation exposure, mean RV dose and the exposure, mean dose to the RV free wall and their percentage of the exposures to more than 20 Gy, the mean lung radiation exposure) simultaneously into the multivariate mode. The reproducibility of the data was analysed with related samples using the Friedman’s test Two-Way analysis of variance by rank. Intraobserver and interobserver

Table 1 Radiation doses to the different cardiac structures

<table>
<thead>
<tr>
<th></th>
<th>Left sided breast cancer (n = 58)</th>
<th>Right sided breast cancer (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole heart (Gy)</td>
<td>2.85 (0.68–6.36)</td>
<td>0.57 (0.34–4.83)</td>
</tr>
<tr>
<td>Left ventricle (Gy)</td>
<td>4.37 (0.80–12.25)</td>
<td>0.11 (0.05–3.30)</td>
</tr>
<tr>
<td>Percentage of the LV with 10 Gy radiation exposure</td>
<td>8.2 % (0–31.7 %)</td>
<td>0 % (0–0 %)</td>
</tr>
<tr>
<td>Percentage of the LV with 20 Gy radiation exposure</td>
<td>5.6 % (0–26.1 %)</td>
<td>0 % (0–0 %)</td>
</tr>
<tr>
<td>LAD (Gy)</td>
<td>18.77 (1.96–41.38)</td>
<td>0.12 (0.05–1.42)</td>
</tr>
<tr>
<td>Right ventricle (Gy)</td>
<td>2.85 (0.68–6.36)</td>
<td>0.45 (0.19–4.46)</td>
</tr>
<tr>
<td>Free wall of the right ventricle (Gy)</td>
<td>4.61 (1.20–21.21)</td>
<td>0.51 (0.14–4.03)</td>
</tr>
<tr>
<td>Ipsilateral pulmonary dose (Gy)</td>
<td>7.65 (4.57–12.69)</td>
<td>8.41 (5.02–12.4)</td>
</tr>
</tbody>
</table>

The radiation doses are derived from 3D CT planning pictures by manual contouring.

Gy Gray, LAD left anterior descending coronary artery.

Fig. 1 A horizontal segment of the planning CT. Tangential photon fields are used in the treatment of the left breast. Fifty per cent of the total radiation dose is shown as radiation field. The cardiac structures are also contoured.
variability were tested by related samples Wilcoxon signed-rank test. All tests were two-sided and \(p \) values <0.05 were considered statistically significant. Statistical analyses were carried out with IBM SPSS Statistics for Windows, Version 20.0 Armonk, NY: IBM Corp. Released 2011.

Results

General characteristics

The mean age of the study group was 63 years (49–79 years). Body mass index (BMI) was over 25 cm/m\(^2\) in 62 % of the patients, and 25 % of the patients were active or ex-smokers. The most common underlying diseases were hypertension (44 %), hypercholesterolemia (22 %), and hypothyroidism (13 %). Thirty-three patients (42 %) had no concurrent diseases other than breast cancer. The detailed baseline characteristics of the patients are shown in Table 3.

Ultrasound tissue characterisation

In the patients with left-sided breast cancer, RT increased the echodensity of the RV free wall and the ventricular septum. The pericardially calibrated integrated backscatter

Table 2 Validation measurements by intraclass correlation coefficients (ICC) with 95 % confidence intervals (CI)

<table>
<thead>
<tr>
<th></th>
<th>Test–retest ICC (95 % CI)</th>
<th>Intraobserver variability ICC (95 % CI)</th>
<th>Interobserver variability ICC (95 % CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration for pericardium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV free wall</td>
<td>0.52 (0.32–0.75)</td>
<td>0.75 (0.47–0.89)</td>
<td>0.56 (0.17–0.80)</td>
</tr>
<tr>
<td>LV septum</td>
<td>0.80 (0.66–0.90)</td>
<td>0.89 (0.75–0.96)</td>
<td>0.88 (0.72–0.95)</td>
</tr>
<tr>
<td>LV posterior wall</td>
<td>0.65 (0.45–0.82)</td>
<td>0.94 (0.85–0.97)</td>
<td>0.77 (0.50–0.90)</td>
</tr>
<tr>
<td>Calibration for cavity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV free wall</td>
<td>0.59 (0.38–0.78)</td>
<td>0.57 (0.19–0.81)</td>
<td>0.52 (0.11–0.78)</td>
</tr>
<tr>
<td>LV septum</td>
<td>0.86 (0.76–0.94)</td>
<td>0.91 (0.79–0.97)</td>
<td>0.86 (0.68–0.94)</td>
</tr>
<tr>
<td>LV posterior wall</td>
<td>0.70 (0.51–0.85)</td>
<td>0.98 (0.94–0.99)</td>
<td>0.82 (0.60–0.92)</td>
</tr>
</tbody>
</table>
(cpIBS) of the RV free wall increased from a baseline value of -15.0 ± 7.3 dB to -13.7 ± 7.9 dB ($p = 0.079$) after RT, and the cavity calibrated IBS (ccIBS) from 20.4 ± 5.9 dB to 22.1 ± 5.6 dB ($p = 0.046$) (Table 4). The septal echodensity with pericardial and cavity calibration increased from -18.2 ± 5.1 dB to -16.0 ± 6.4 dB ($p = 0.002$) and from 17.3 ± 5.2 dB to 19.8 ± 5.5 dB ($p < 0.001$), respectively. RT did not cause any significant changes in the posterior LV echodensity.

A left-sided RT-induced increase in septal cpIBS and ccIBS values correlated with radiation doses to the corresponding cardiac structures. The septal cpIBS value correlated with the mean LAD dose ($\rho = 0.241$, $p = 0.042$), the mean whole heart dose ($\rho = 0.306$, $p = 0.009$), the mean RV dose ($\rho = 0.243$, $p = 0.040$), the mean RV free wall dose ($\rho = 0.246$, $p = 0.037$), and the mean LV dose ($\rho = 0.289$, $p = 0.014$). The septal ccIBS value correlated with the mean LV dose ($\rho = 0.251$, $p = 0.034$). Patient age was weakly associated with an increase in septal cpIBS ($\rho = 0.196$, $p = 0.099$) and ccIBS values ($\rho = 0.238$, $p = 0.044$). Concomitant diseases, ECG changes, hsTnt, proBNP, or medication were not associated with the changes in septal echodensity. A decrease in tricuspid annular plane systolic excursion (TAPSE) correlated with an increase in septal cpIBS ($p = 0.032$). None of the other conventional echocardiographic parameters had an association with changes in the UTC parameters.

A multivariate logistic regression analysis, in which all variables were entered simultaneously into the model, demonstrated an independent relationship between the increased septal cpIBS values and the percentage of the LV exposed to 20 Gy (OR 3.22 [95 % CI 1.05–9.88]).

Table 3 Baseline characteristics of the study cohort

<table>
<thead>
<tr>
<th>Variable</th>
<th>Left sided breast cancer (n = 58)</th>
<th>Right sided breast cancer (n = 20)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean ± SD</td>
<td>63 ± 7</td>
<td>63 ± 5</td>
<td>0.723</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)*, mean ± SD</td>
<td>145 ± 19</td>
<td>150 ± 20</td>
<td>0.291</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg), mean ± SD</td>
<td>79 ± 12</td>
<td>79 ± 12</td>
<td>0.945</td>
</tr>
<tr>
<td>Height (cm), Md (IQR)</td>
<td>164 (158–167)</td>
<td>162 (158–167)</td>
<td>0.521</td>
</tr>
<tr>
<td>Weight (kg), Md (IQR)</td>
<td>69.5 (64–83)</td>
<td>70.5 (65–82)</td>
<td>0.977</td>
</tr>
<tr>
<td>Body mass index (kg/m²), Md (IQR)</td>
<td>26.2 (24.1–30.0)</td>
<td>26.6 (24.7–30.0)</td>
<td>0.533</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>Previous</td>
<td>7 (12 %)</td>
<td>2 (10 %)</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>8 (14 %)</td>
<td>2 (10 %)</td>
<td></td>
</tr>
<tr>
<td>Prior diagnosisb, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>21 (36 %)</td>
<td>13 (65 %)</td>
<td>0.025</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>4 (7 %)</td>
<td>3 (15 %)</td>
<td>0.364</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>13 (22 %)</td>
<td>4 (20 %)</td>
<td>1.000</td>
</tr>
<tr>
<td>Hypothyreosis</td>
<td>7 (12 %)</td>
<td>3 (15 %)</td>
<td>0.711</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>2 (3 %)</td>
<td>1 (5 %)</td>
<td>1.000</td>
</tr>
<tr>
<td>Valvular disease</td>
<td>1 (2 %)</td>
<td>1 (5 %)</td>
<td>0.450</td>
</tr>
<tr>
<td>Medical treatment, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta blocker</td>
<td>6 (10 %)</td>
<td>5 (25 %)</td>
<td>0.138</td>
</tr>
<tr>
<td>Calcium channel blocker</td>
<td>4 (7 %)</td>
<td>4 (20 %)</td>
<td>0.193</td>
</tr>
<tr>
<td>ACE inhibitors/ARBs</td>
<td>14 (24 %)</td>
<td>10 (50 %)</td>
<td>0.031</td>
</tr>
<tr>
<td>Diuretics</td>
<td>8 (14 %)</td>
<td>7 (35 %)</td>
<td>0.051</td>
</tr>
<tr>
<td>Thyroxin</td>
<td>7 (12 %)</td>
<td>3 (15 %)</td>
<td>0.711</td>
</tr>
<tr>
<td>Nitrates</td>
<td>1 (2 %)</td>
<td>0 (0 %)</td>
<td>1.000</td>
</tr>
<tr>
<td>Aspirin</td>
<td>6 (11 %)</td>
<td>3 (15 %)</td>
<td>0.689</td>
</tr>
<tr>
<td>Statin</td>
<td>11 (19 %)</td>
<td>4 (20 %)</td>
<td>1.000</td>
</tr>
<tr>
<td>Oral diabetes medication</td>
<td>4 (7 %)</td>
<td>3 (15 %)</td>
<td>0.364</td>
</tr>
<tr>
<td>Aromatase inhibitor</td>
<td>22 (38 %)</td>
<td>8 (40 %)</td>
<td>0.870</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>2 (3 %)</td>
<td>4 (20 %)</td>
<td>0.035</td>
</tr>
</tbody>
</table>

*ACE angiotensin-converting enzyme, ARB angiotensin II blocker, Sd standard deviation, Md median, IQR interquartile range

* Measured at first visit

b Defined as medication requiring disease state. The values are presented either as the mean ± SD or the number of cases and percentage in the present study population.
the mean lung dose reached statistical significance OR 1.69 (95 % CI 1.01–2.84). Data not shown.

Stable or increased septal ccIBS was independently associated with an increased percentage of the LV exposed to a 20 Gy (Mann–Whitney test \(p = 0.017 \)) and a 10 Gy (\(p = 0.009 \)) radiation dose. Likewise, stable or increasing septal ccIBS values were independently associated with the increased percentage of the LV with exposure to 20 Gy (\(p = 0.029 \)) and 10 Gy (\(p = 0.022 \)) radiation. The increase in the RV free wall cpIBS value was associated with decreasing TAPSE (\(p = 0.045 \)) and with an increase in the mitral inflow declaration time (dt) (\(p = 0.022 \)). In addition, diabetes was associated with a decrease in RV free wall cpIBS (\(p = 0.015 \)). The increase in RV free wall echodensity did not depend on the radiation doses or other parameters.

In contrast to the remarkable changes caused by the adjuvant RT in patients with left-sided breast cancer, it did not cause any significant UCT changes in patients with right-sided breast cancer. Detailed characteristics of the UTC analysis are shown in Table 4.

Conventional echocardiographic measurements

Patients receiving adjuvant RT for left-sided breast cancer experienced minor changes in several conventional echocardiographic parameters (Table 5). The thickness of the septum increased from 10.0 ± 1.4 to 10.3 ± 1.5 mm (\(p = 0.030 \)) and the LV posterior wall from 9.9 ± 1.3 to 10.3 ± 1.9 mm (\(p = 0.071 \)), respectively. In 3D analysis, the LV volume decreased from 98 ± 18 to 94 ± 17 ml (\(p = 0.016 \)) in diastole, and from 40 ± 8 to 38 ± 9 ml (\(p = 0.028 \)) in systole. LV systolic volume decreased in 58 % of patients and diastolic volume in 61 %. LV mass increased from 102 ± 18 to 107 ± 18 g (\(p = 0.005 \)) and an increase in LV mass was observed in 66 % of patients. LV systolic function remained unaffected during the RT.

Among the right sided echocardiographic parameters, the only significant RT-induced change was that TAPSE decreased from 24.3 ± 4.0 to 22.3 ± 4.1 mm (\(p < 0.001 \)). No valvular or pericardial changes were observed between the baseline and last echocardiographic examination.

In patients with right-sided breast cancer, most of the RT-induced changes in the conventional echocardiographic parameters were statistically insignificant (Table 5). There was a trend of increased LV wall thickness, but this did not reach statistical significance. However, the declaration time increased from 211 ± 42 to 243 ± 51 ms (\(p = 0.015 \)).

Electrocardiogram

Left-sided RT caused minor ECG changes in 18 patients (31 %). The most typical changes were T-wave inversions in leads V1–4, and in some patients also in leads aVL and I. These changes were not accompanied by any symptoms. Right-sided breast cancer patients did not display RT-induced ECG changes (difference between groups \(p = 0.006 \)).

Biochemical markers

In patients with adjuvant RT for left-sided breast cancer, hsTnt increased from a baseline value of 5.5 ± 2.4 ng/l to a maximum value of 6.1 ± 2.7 ng/l (\(p = 0.006 \)). Twelve patients (17 %) experienced a rise from the basal value of over 30 %, and the highest measured hsTnt value was 15 ng/l. For the baseline, proBNP was 117 ± 143 ng/l and it increased to 149 ± 194 ng/l during RT (\(p = 0.002 \)). The increase from the baseline was over 30 % in 31 patients (53 %).

Adjuvant RT caused no significant changes in biomarkers in patients with right-sided breast cancer. hsTnt was 6.6 ± 6.6 ng/l at the baseline and 6.7 ± 4.1 ng/l (\(p = 0.948 \)) after RT. One patient experienced a rise over
Table 5 Basic echocardiographic measurements

<table>
<thead>
<tr>
<th>Variable</th>
<th>Left-sided breast cancer (n = 58)</th>
<th>Right-sided breast cancer (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>After radiotherapy</td>
</tr>
<tr>
<td>LVEDD (mm)</td>
<td>45.3 ± 4.0</td>
<td>44.9 ± 3.7</td>
</tr>
<tr>
<td>LVEDS (mm)</td>
<td>30.5 ± 3.4</td>
<td>30.1 ± 3.5</td>
</tr>
<tr>
<td>IVS (mm)</td>
<td>10.0 ± 1.4</td>
<td>10.3 ± 1.5</td>
</tr>
<tr>
<td>PW (mm)</td>
<td>9.9 ± 1.3</td>
<td>10.3 ± 1.9</td>
</tr>
<tr>
<td>LVEDV (ml)</td>
<td>98 ± 18</td>
<td>94 ± 17</td>
</tr>
<tr>
<td>LVESV (ml)</td>
<td>40 ± 8</td>
<td>38 ± 9</td>
</tr>
<tr>
<td>Stroke volume (ml)</td>
<td>59 ± 12</td>
<td>58 ± 12</td>
</tr>
<tr>
<td>LVED mass (g)</td>
<td>102 ± 18</td>
<td>107 ± 18</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>61.2 ± 5.9</td>
<td>62.2 ± 6.4</td>
</tr>
<tr>
<td>Mitral inflow E (cm/s)</td>
<td>73 ± 15</td>
<td>70 ± 15</td>
</tr>
<tr>
<td>Mitral inflow a (cm/s)</td>
<td>78 ± 20</td>
<td>75 ± 15</td>
</tr>
<tr>
<td>Mitral inflow Ea-ratio</td>
<td>0.98 ± 0.28</td>
<td>0.97 ± 0.27</td>
</tr>
<tr>
<td>Mitral inflow dt⁴ (ms)</td>
<td>236 ± 41</td>
<td>243 ± 41</td>
</tr>
<tr>
<td>IVRT (ms)</td>
<td>104 ± 22</td>
<td>110 ± 22</td>
</tr>
<tr>
<td>LV Ee’ ratio</td>
<td>9.2 ± 2.7</td>
<td>8.9 ± 2.5</td>
</tr>
<tr>
<td>LAVI (ml/m²)</td>
<td>33.2 ± 8.4</td>
<td>32.7 ± 7.8</td>
</tr>
<tr>
<td>RV basal dimension (mm)</td>
<td>34.2 ± 5.0</td>
<td>33.6 ± 4.5</td>
</tr>
<tr>
<td>TAPSE (mm)</td>
<td>24.3 ± 4.0</td>
<td>22.3 ± 4.1</td>
</tr>
<tr>
<td>RV s’ (cm/s)</td>
<td>12.2 ± 2.9</td>
<td>11.9 ± 2.6</td>
</tr>
<tr>
<td>TR gradient (mmHg)</td>
<td>22.8 ± 4.7</td>
<td>22.1 ± 3.8</td>
</tr>
<tr>
<td>RV Ee’ ratio</td>
<td>4.2 ± 1.2</td>
<td>4.3 ± 1.3</td>
</tr>
</tbody>
</table>

LVEDD left ventricular end diastolic diameter, LVEDS left ventricular end systolic diameter, IVS interventricular septum, PW posterior wall, LVEDV left ventricular end diastolic volume, LVESV left ventricular end systolic volume, LVED mass left ventricular end diastolic mass, LVEF left ventricular ejection fraction, dt declaration time, IVRT isovolumetric relaxation time, LV Ee’ ratio ratio between mitral inflow E-velocity, and averaged pulsed Doppler e’ velocity derived from septal, lateral, anterior and inferior walls, LAVI left atrial volume indexed to the patient’s body surface area, TAPSE tricuspidal annular plane systolic excursion, RV s’ pulse tissue Doppler systolic velocity derived from the right ventricles free wall, TR gradient maximal gradient derived from the tricuspidal regurgitation, RV Ee’ ratio ratio between tricuspidal inflow E-velocity and the pulsed tissue Doppler e’ velocity derived from the RV free wall

* There is a significant difference (p = 0.025) in baseline values between the groups of left and right sided breast cancer tested by Mann–Whitney U test. Statistical significant p values (<0.05) are bolded

30 % during the RT treatment course. ProBNP baseline and maximal values were 91 ± 42 and 89 ± 43 ng/l (p = 0.645). Two patients experienced a rise of over 30 % during the RT treatment course.

Discussion

In this study, we demonstrated for the first time that RT causes significant changes in the ultrasound characteristics of the myocardium. In light of the strong association with increased myocardial echodensity and histopathological changes such as scarring and fibrosis [9, 10, 14], our data indicate that UCT may be a feasible and sensitive non-invasive tool for the detection of cardiac damage early after RT.

Clinical implications

RT increased echodensity in the RV free wall and in the septum in patients with left-sided breast cancer, but there were no changes in the posterior parts of the heart and in patients with right-sided breast cancer. The results of previous UCT studies in patients with prior myocardial infarction, cardiomyopathy, and doxorubicin-induced myocardial alterations indicate that there is a strong association between histological changes (e.g., scarring, collagen content) and increased myocardial backscattering [9–11, 13]. Increased echodensity has also been found in patients with diabetes, thyroid dysfunction, iron overload and acute cardiac allograft rejection, despite no abnormalities in conventional echocardiographic parameters [14–17]. Moreover, RT has been
shown to increase collagen content in myocardial biopsies several years after the treatment course has finished [7].

Hence, our data may have important clinical implications for the detection of RT-induced early myocardial injury. RT is known to initiate a complex fibrotic process. The early phase is characterised by inflammatory tissue changes [2, 5, 8]. The earliest fibrotic tissue manifestations appear 40 days after the start of irradiation [8]. In our study, the control echocardiography was performed 34 ± 11 days after the first RT dose. We demonstrated that RV and septal echodensity increased in more than 60% of patients with left-sided breast cancer. Hence, although no myocardial biopsies were taken for histological examination in these otherwise healthy patients, it is possible that in some of them the development of RT-induced fibrosis had already started.

The 2D echocardiographic measurements demonstrated that myocardial wall thickness increased after RT. In 3D analysis, both systolic and diastolic volumes decreased with simultaneous increase of the myocardial mass. All of these changes could be a result of an initial inflammatory process, the early phase of fibrotic manifestations, or both. The concurrent changes in myocardial mass and increased values in UTC in combination are a strong indicator of RT-induced alterations in myocardial structures. Increases in RV and septal echodensity were also associated with a decrease in TAPSE. TAPSE is a reliable and reproducible RV systolic function parameter, which has been shown to be an early indicator of RT-induced myocardial changes [18]. Finally, the distribution of the UTC changes correlated with radiation doses to the different anatomical areas of the heart. Therefore, treatment planning and heart contouring are important for the prevention of late cardiac manifestations.

Radiotherapy-induced heart disease (RIHD) seems to be a slow process that produces clinical adverse sequelae years and decades after RT treatment [1, 2, 4, 5]. A non-invasive tool with a high specificity and sensitivity to identify early structural alterations, fibrosis, and collagen accumulation would be well suited for the risk stratification of patients after breast cancer RT. Our study introduces a new method for the early detection of RT-induced myocardial injury. The primary goal of our study was to show that even modern conformal 3D RT may cause detectable changes in the heart. Our findings thereby support the implementation of careful follow-up programmes for these patients, as recommended in a recent consensus statement [5]. Individual susceptibility to RT-induced injury varies from person to person. Hypertension, heart diseases, smoking, and the radiation volume and dose are known risk factors for RIHD, but there might be also other factors, such as the concurrent use of an aromatase inhibitor [1, 2, 4, 5, 19].

UTC could be a useful tool to identify individuals who are most vulnerable to developing complications after RT and who would benefit the most from a careful follow-up process. However, larger studies are needed to verify our preliminary findings, and a longer follow-up is required to clarify the long-term clinical impact of these findings.

Biochemical markers, ECG, and conventional echocardiographic parameters

Both hsTnt and proBNP increased after RT in patients with left-sided breast cancer, but not in those with right-sided breast cancer. Likewise, there were ECG changes only in patients with left-sided breast cancer. Even though none of these changes caused any immediate cardiac symptoms, the difference between the patients with left-sided and right-sided breast cancer is interesting. It can be speculated that these subtle changes may reflect the same process as the echocardiographic changes and indicate a high risk of late myocardial manifestations.

Technical viewpoints

UTC is unaffected by heart rate, preload, afterload and inotropic state of the heart [20], but ultrasound system settings influence IBS signal intensity [12]. A higher gain setting results in stronger returning signals. Therefore, the received values must be calibrated to measurements derived from an acoustically stable object. Rubber phantom, pericardia and ventricular cavities have been used for this purpose [11, 12]. We used both pericardial and cavity values for calibration. The calibration to the cavity seemed to be more reproducible, whereas interobserver variability was smaller with pericardial calibration. The calibrated values for the septum showed good reproducibility in repeated measurements and reanalysis of the previously acquired clips. The repeatability and interobserver variability of RV measurements with pericardial calibration was worse than with cavity calibration. Due to the attenuation of the ultrasound beam, the returning signal from the deeper parts of the heart, such as from the LV posterior wall, is weaker [14, 16, 21]. This resulted in the poor reproducibility of posterior wall values in our study.

Limitations of our study

The left-sided and right-sided breast cancer patient groups were of uneven size. Both groups were relatively small and further studies are needed to confirm our results. Previous studies have shown a strong correlation between tissue collagen content and integrated backscatter. In our study, a histological confirmation of these findings was not ethically acceptable as the patients had no cardiac symptoms or clinical findings. However, this leaves room for speculation of the fundamental cause of the myocardial changes.
detected in our study. Late enhancement MRI studies or fibrosis-dedicated blood samples could be used in future studies and a comparison between the different imaging modalities could enhance our knowledge of this issue. Finally, the control echocardiography study was executed immediately after RT and thereby reflects very short-term consequences. A long-term follow-up is currently underway to reveal the development of late adverse clinical effects.

Conclusion

Ultrasound tissue characterisation revealed an increase in myocardial wall tissue density after breast cancer adjuvant RT, particularly in the areas that received the highest radiation dose, despite no clinical signs of cardiac affection. As a sensitive marker of myocardial tissue abnormalities, UTC can be used for the screening of early RT-induced changes and as a tool to identify patients who might benefit the most from a long-term follow-up.

Acknowledgments The authors thank research nurses Virpi Räisänen, Hanna Näppälä, and Emmi Vetternranta for their expert assistance during the study. This study was supported by the Pirkkanmaa Hospital District, Seppo Nieminen Fund (Grant 150613), Paavo and Eila Salonen Legacy, Ida Montini Fund, the Finnish Foundation for Cardiovascular Research, The Finnish Cultural Foundation, Pirkkanmaa Regional Fund and by the Finnish Medical Foundation.

Compliance with ethical standards

This study have received financial support in form of grants from non-commercial foundations. Tanja Skytta has received grants from the Pirkkanmaa Hospital District, Seppo Nieminen Fund (grant 150613) and from the Finnish Foundation for Cardiovascular Research. Suvi Tuohinen has received grants from Paavo and Eila Salonen Legacy, Ida Montini Fund, the Finnish Cultural Foundation, Pirkkanmaa Regional Fund and by the Finnish Medical Foundation. This study has been approved by the institutional board of ethics and all participants signed informed consent before enrolment in the study. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Conflict of interest None.

References

Detection of early radiotherapy-induced changes in intrinsic myocardial contractility by ultrasound tissue characterization in patients with early-stage breast cancer

Suvi Sirkku Tuohinen MD1 | Tanja Skyttä MD2 | Heini Huhtala MSc3 | Vesa Virtanen MD PhD1 | Marko Virtanen MD1 | Pirkko-Liisa Kellokumpu-Lehtinen MD PhD2 | Pekka Raatikainen MD PhD4

1Heart Center Co., Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
2Department of Oncology, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
3School of Health Sciences, University of Tampere, Tampere, Finland
4Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland

Correspondence
Suvi Sirkku Tuohinen, Heart Center Co, Tampere University Hospital, Tampere, Finland.
Email: suvi.tuohinen@fimnet.fi

Funding information
Finnish Cultural Foundation, Pirkanmaa Regional Fund; Pirkanmaa Hospital District; Seppo Nieminen Fund, Grant/Award Number: 150613; Paavo and Ella Salonen Legacy; Ida Montin Fund; Finnish Foundation for Cardiovascular Research; Finnish Society for Oncology; Finnish-Norwegian Medical Foundation; Pirkanmaa Cancer Society; Finnish Medical Foundation.

Background: Increased cardiovascular morbidity and mortality are major late complications after radiotherapy (RT) in the thoracic region. Ultrasound tissue characterization (UTC) is a noninvasive method for the identification of myocardial changes. The aim of this prospective clinical trial was to assess whether the analysis of cyclic variation of integrated backscatter (CVIBS) can detect early RT-induced myocardial alterations.

Methods: Seventy-three eligible patients with early-stage breast cancer were evaluated before and immediately after adjuvant RT. Twenty and 53 patients had right-sided and left-sided breast cancer, respectively. None of the patients received chemotherapy. Comprehensive echocardiographic examination included three-dimensional (3D) measurements and UTC analysis of the left ventricular (LV) septum and posterior wall.

Results: RT reduced CVIBS in a dose-dependent manner. The mean heart radiation dose over two gray (Gy) reduced the septal CVIBS from 12.0±3.4 to 9.6±2.5 dB ($P<.001$) and the posterior wall CVIBS from 12.8±2.7 to 11.3±2.4 dB ($P=.007$). The CVIBS remained unchanged when the mean heart RT dose was below 2 Gy. Multivariate analysis showed an independent association with a change in septal CVIBS and the use of aromatase inhibitor ($\beta=2.986$, $P=.001$) and body mass index ($\beta=-0.241$, $P=.014$). The posterior values were worse with higher mean lung dose ($\beta=-.485$, $P=.018$) and with nonsmoking status ($\beta=-2.411$, $P=.009$). Echocardiography parameters showed increased myocardial mass but conventional measurements of the LV systolic function remained unchanged.

Conclusions: Cyclic variation of integrated backscatter analysis seems to be a sensitive method to detect early RT-induced myocardial changes. Hence, it may be useful in screening of patients needing closer follow-up.

KEYWORDS
breast cancer, cyclic variation of integrated backscatter, radiotherapy, ultrasound tissue characterization
Breast cancer is the most common cancer in females in Western countries. Adjuvant radiotherapy (RT) reduces local breast cancer relapses and disease-related mortality. However, RT in the thoracic region increases late cardiovascular morbidity and mortality. Radiotherapy-induced heart disease (RIHD) includes coronary artery disease, left-sided valvular abnormality, disturbances in the conduction system, myocardial fibrosis, and rarely constrictive pericarditis. Although RIHD usually becomes clinically apparent after several years of the latency period, detection of early cardiac changes may have an important role in the identification of patients at risk for RIHD.

The early RT-induced cardiac changes are poorly characterized and detection of subclinical changes is challenging. Ultrasound tissue characterization (UTC) provides convenient means to detect subclinical myocardial changes noninvasively. When ultrasound interacts with the myocardial tissue, small components cause scattering of the ultrasound signal. A part of the scattering reflects back to the transducer, that is, backscattered signal. The amount of redirected energy is dependent on the myocardial texture. Myocardial fibrosis, particularly collagen content, is the major component of tissue reflectivity, but fiber architecture, myocyte orientation, and extracellular matrix are also contributing factors. The magnitude of reflectivity changes during the cardiac cycle appears to correspond to the regional intrinsic myocardial contractility although the precise basis for cyclic variation of the integrated backscattered (CVIBS) is unknown. CVIBS has been shown to reveal myocardial dysfunction earlier than conventional echocardiographic techniques and to have prognostic importance. The aim of this study was to evaluate the capability of CVIBS to detect RT-induced myocardial changes in the initial phase after adjuvant RT for early-stage breast cancer.

2 | METHODS

2.1 | Patient selection

A total of 73 eligible female patients with early-stage breast cancer undergoing adjuvant RT were included in this prospective clinical study between July 2011 and November 2013 at Tampere University Hospital. Fifty-three and 20 of the patients had left-sided and right-sided breast cancer, respectively. All patients received adjuvant conformal three-dimensional (3D) RT after breast cancer resection. An adjuvant chemotherapy treatment was not indicated for this early breast cancer population. The exclusion criteria were age under 18 years or over 80 years, other malignancy, pregnancy or breast feeding, acute myocardial infarction within 6 months, symptomatic heart failure (New York Heart Association classification [NYHA]), dialysis, permanent anticoagulation, and severe psychiatric disorders. To optimize the echocardiography image quality, patients with atrial fibrillation, a left bundle branch block, a permanent pacemaker, and a severe lung disease were also excluded. The local institutional board of ethics approved the protocol (R10160), and all participants signed a written informed consent before enrollment.

2.2 | Radiotherapy

RT protocol has been previously described in detail. Briefly, pretreatment 3D computed tomography treatment planning and contouring were performed in all patients by the same radiation oncologist (TS). Treatment doses were either 50 gray (Gy) in 2 Gy fractions (standard) or 42.56 Gy in 2.66 Gy fractions (hypofractionated) according to the local guidelines. An additional boost of 16 Gy in 2 Gy fractions to the tumor bed was used if clinically indicated after breast conserving surgery. Doses were calculated using the anisotropic analytical algorithm, and dose-volume histograms for different structures were generated for each patient (Table 1). The patients were divided into groups according to the mean heart dose on the basis of our previous findings, patients receiving less than 2 Gy mean heart dose (low) and patients receiving over 2 Gy mean heart dose (high).

2.3 | Cardiac examinations

A comprehensive echocardiography and a 12-lead electrocardiogram (ECG) were performed at baseline and at the end of RT (0–6 days from the last radiation dose). The median interval between the first and the second study was 39 days (19–93 days). High sensitivity troponin T (hsTnT) and pro-B-type natriuretic peptide (proBNP) were measured at each visit and during the treatment course.

All echocardiographic examinations were performed using a commercially available cardiac ultrasound machine (Philips iE33 ultrasound machine).
system, Bothell, WA, USA) and a 1–5 MHz matrix-array X5-1 transducer by the same cardiologist (SST). All images were acquired at rest with a simultaneous superimposed ECG. Subcostal imaging was performed in the supine position, and other imaging was performed with the patient in the left lateral decubitus position. Doppler recordings were acquired at the end of expiration.

For two-dimensional UTC analysis, a parasternal short-axis view clip was obtained over several cycles (Figure 1). No lateral or time gain compensation was used. The raw data were stored in an external hard drive for offline analysis (Qlab Philips). A square of 5×5 mm regions of interest (ROI) was carefully positioned in the anterior septum avoiding areas with bright endocardial or epicardial specular reflections, as well as very bright or hypoechoic regions within the myocardium. A second ROI was positioned in the posterior wall. The correct myocardial positioning during the whole clip was controlled by inspection of the ROIs throughout the entire clip, and repositioning was performed if necessary. The maximal and minimal values of the integrated backscatter were recorded. Cyclic variation was calculated as the difference between the maximal and minimal values. All UTC analyses were performed by a single person (SST) and blinded for the cardiac radiation exposure.

The ECG analyses of the baseline and post-RT ECGs were performed manually (SST) according to general clinical practice. Differences between baseline and post-RT recordings were visually judged of the P-waves, QRS-complexes, the T-waves, and the ST-segments. No other clinically significant changes were found, the T-wave inversions were categorized registered both according to the individual leads and as whether patient had or had not any T-wave inversions. A T-wave inversion was defined either as a change from positive or isoelectric to negative or from negative to positive.

2.4 Statistical analysis

Data are reported as mean and standard deviation for normally distributed variables and as median with range for other continuous variables. Differences between baseline and after RT values were tested using the paired samples \(t \) test, for variables with skewed distribution after logarithmic transformation. Differences in the baseline characteristics between the groups were tested using Student’s \(t \) test for continuous variables and Fisher’s exact test for categorical variables. The association of the variables with the change in CVIBS values was tested using Pearson correlation \((r_p) \). Stepwise forward linear multivariate regression analysis was performed to test the independent relationship of the changes in CVIBS values with other parameters (age, diabetes, hypertension, body mass index (BMI), the use of aromatase inhibitor (AI), smoking and the mean heart dose for septal values, and mean lung dose for posterior values). Blinded data from 20 healthy volunteers were used to test the reproducibility of the UTC measurements. The reproducibility and intra- and inter-observer variability were tested using the Bland-Altman plot (Figure 2). All tests were two-sided, and \(P \)-values <.05 were considered statistically significant. Statistical analyses were performed with IBM SPSS Statistics 22.0 for Windows.

3 RESULTS

3.1 General characteristics

The mean age of the study group was 64±6 years. The BMI was over 25 kg/m\(^2\) in 63% of the patients, and 23% of the patients were current or ex-smokers. Thirty-one patients (43%) had no other concurrent diseases. Detailed baseline characteristics of the patients are shown in Table 2.

3.2 Ultrasound tissue characterization

Among patients in the high group, the septal CVIBS (sCVIBS) and the posterior CVIBS (pCVIBS) values declined significantly by 2.4±3.0 decibels (dB) \((p<.001) \) and 1.5±3.1 dB \((p=.007) \) after the RT, respectively. In the low group, the changes were nonsignificant both for sCVIBS 0.2±3.8 dB \((p=.745) \) and for pCVIBS 0.2±3.7 dB \((p=.728) \). (Table 3).

3.3 Factors associated with changes in the septal CVIBS

Despite clear tendency, no statistically significant correlations were observed between the sCVIBS change and mean heart radiation dose \((r_p=-0.211, P=.079) \), mean left ventricle (LV) radiation dose \((r_p=-0.203, P=.091) \), volume receiving more than 40 Gy in left anterior descending artery (LAD) region \((r_p=-0.228, P=.024) \), and reduction in LV end-diastolic volume \((r_p=-0.228, P=.075) \). On the other hand, the reduction in the sCVIBS value was associated with the use of AI \((P=.013) \). The mean baseline sCVIBS value in patients using AI was 9.5±2.4 dB and 12.2±3.3 dB among those not using AI \((P<.001) \). In patients using AI, the mean sCVIBS value after radiotherapy was 10.3±2.7 dB \((P=.234) \).
and 8.7±1.8 dB (P=.097) in the low and high groups, respectively. The corresponding values for patients not using AI were 9.8±2.6 dB (P=.056) in the low group and 10.1±2.8 dB in the high group (P<.001). Linear multivariate regression analysis revealed that BMI (β=−0.241, P=.014) and the use of AI (β=2.986, P=.001) were independently associated with the change of the sCVIBS. An increase in BMI with one unit was associated with a 0.24-dB decrease in sCVIBS after RT.

3.4 | Factors associated with the changes in posterior CVIBS

The pCVIBS change had weak negative correlation with the mean lung radiation dose (rP=−0.272, P=.023) and the change in LV end-diastolic volume (rP=−0.232, P=.070), and a positive correlation with the LV mass change (rP=0.465, P>.001). The reduction in pCVIBS was also associated with the use of tamoxifen (P=.050) and nonsmoking status (P=.011). Non-smoking (β=−2.411, P=.009) and mean lung dose (β=−0.485, P=.018) were independently associated with the change in pCVIBS values in linear multivariate regression analysis. Nonsmoking status was associated with a 2.41-dB higher reduction in the pCVIBS. Each increase by one Gy in the mean lung irradiation dose was associated with a pCVIBS decline by 0.49 dB.

3.5 | Conventional echocardiographic measurements

The LV myocardial mass increased from 101±16 g to 105±17 g (P=.039) and remained unchanged from 110±24 g to 112±24 g (P=.114) in the low and high groups, respectively. The analysis of LV volumes in 3D recordings showed that the end-diastolic volume was unchanged from 96±21 mL to 95±21 mL (P=.839) in the low group patients and declined from 102±21 mL to 97±20 mL (P=.028) in the high group patients. The ejection fraction of the LV remained essentially unchanged. The other measurements are displayed in Table 4.

3.6 | Electrocardiogram and biochemical markers

RT induced minor asymptomatic ECG changes in 18 patients (25%). The most typical ECG changes were T-wave inversions in leads V1-4 and sometimes also in leads aVL and I. ECG changes were more common in the high than the low group (16 vs 2 patients) (P=.001).

In the low group, the baseline and highest hsTnt values were 4 (4–8) ng/L and 5 (4–12) ng/L (P=.056), respectively. In the high group, the baseline hsTnt was 4 (4–33) ng/L, and the highest value was 5 (4–20) ng/L (P=.175). The rise in hsTnt was over 30% in 6% of the patients and 21% of the patients (P=.047) in the low and high groups, respectively.

The baseline and highest proBNP values in the low group were 77 (12–305) ng/L and 88 (15–284) ng/L (P=.285), respectively. In the high group, the baseline values were 57 (14–824) ng/L and the highest values 84 (20–1101) ng/L (P<.001), respectively. The highest proBNP value above reference value was observed in none in the low and in four in the high group patients (P=.057).
The results of this study indicate that breast cancer RT-induced early changes in local myocardial function can be detected by UCT analysis but not by conventional systolic LV measurements. In light of the prognostic power of the UCT analysis in other diseases, these early changes may have an impact on the long-term cardiovascular morbidity and mortality of these patients.

4 | DISCUSSION

The results of this study indicate that breast cancer RT-induced early changes in local myocardial function can be detected by UCT analysis but not by conventional systolic LV measurements. In light of the prognostic power of the UCT analysis in other diseases, these early changes may have an impact on the long-term cardiovascular morbidity and mortality of these patients.
The effect of AI on the myocardial function was an interesting finding. AIs were prescribed as an adjuvant hormonal treatment prior to RT for one third of the patients. These patients had significantly lower baseline sCVIBS values than those not using AIs. In addition, the harmful effects of radiation were larger among patients receiving high dose RT and adjunct AI therapy. Thus, the use of AI not only had a direct negative effect on LV function but it also augmented the negative effects of RT when the mean heart dose exceeded 2 Gy. These findings are in agreement with prior reports indicating that the use of AI may have adverse cardiac effects. In an experimental ischemia/reperfusion study, endogenous estrogen synthesis appeared to have cardioprotective effect, whereas inhibition of estrogen metabolism by AI increased the injury size. In a clinical setting, Duygu et al. recently demonstrated that estrogen replacement therapy in healthy postmenopausal females increased CVIBS values.

4.4 | Clinical implications

Detection of subclinical cardiac changes in the early phase after breast cancer RT is important but challenging. The presence of these changes might indicate increased risk of late manifestations. Common late manifestations of RIHD include diastolic dysfunction, valvular abnormalities, coronary artery stenosis, pericardial constrictions, and conduction system disturbances. According to our data, CVIBS measurement seems to be a more sensitive tool than conventional echocardiographic measurements for detection of the early myocardial changes. As such, it could be used in screening for patients with early changes. As the early subclinical changes precede late, clinically significant cardiac manifestations, a sensitive tool to detect the early changes could be used to guide the development of RT protocols.

TABLE 4 Echocardiographic measurements

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=36</td>
<td>n=37</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td>After RT</td>
</tr>
<tr>
<td>LVEDD (mm)</td>
<td>44±1.4</td>
<td>44±1.3</td>
</tr>
<tr>
<td>LVESD (mm)</td>
<td>30.3±3.2</td>
<td>30.2±3.1</td>
</tr>
<tr>
<td>IVS (mm)</td>
<td>9.9±1.5</td>
<td>10.3±1.6</td>
</tr>
<tr>
<td>PW (mm)</td>
<td>9.8±1.2</td>
<td>10.2±1.4</td>
</tr>
<tr>
<td>LVEDV (mL)</td>
<td>96±21</td>
<td>95±21</td>
</tr>
<tr>
<td>LVESD (mL)</td>
<td>39±11</td>
<td>40±11</td>
</tr>
<tr>
<td>LVED mass (g)</td>
<td>101±16</td>
<td>105±17</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>59±6</td>
<td>58±6</td>
</tr>
<tr>
<td>Mitral inflow E (cm/s)</td>
<td>75±19</td>
<td>70±17</td>
</tr>
<tr>
<td>Mitral inflow a (cm/s)</td>
<td>77±17</td>
<td>74±14</td>
</tr>
<tr>
<td>Mitral inflow dt (ms)</td>
<td>224±45</td>
<td>242±48</td>
</tr>
<tr>
<td>LV E/e’ ratio</td>
<td>9.8 (7.3–11.8)</td>
<td>9.1 (7.5–10.3)</td>
</tr>
<tr>
<td>RV basal dimension (mm)</td>
<td>33.5±5.6</td>
<td>33.0±4.8</td>
</tr>
<tr>
<td>TAPSE (mm)</td>
<td>24.1±4.6</td>
<td>22.6±4.4</td>
</tr>
<tr>
<td>TR gradient (mm Hg)</td>
<td>22.0±6.5</td>
<td>20.4±5.5</td>
</tr>
</tbody>
</table>

LVEDD and LVESD, left ventricular end-diastolic and end-systolic diameters; IVS and PW, interventricular septum and posterior wall thicknesses at the end diastole; LVEDV, LVESV, and LVED mass, left ventricular end-diastolic and end-systolic volumes and end-diastolic mass derived from the three-dimensional acquisition; dt, declaration time; LV, left ventricular; RV, right ventricle; TAPSE, tricuspid annular plane systolic excursion; TR gradient, tricuspid regurgitation maximal gradient. P<.05 are considered as statistically significant (bold) and P-values between .10 and .05 are considered as intermediate significant (italics).
as well as to point out individuals with increased risk for late RIHD. CVIBS could be considered to be used in this context.

The results of several experimental and clinical studies have proven that fibrosis plays an important role in development of intrinsic myocardial dysfunction.22,30,31 It has been shown that reduced CVIBS is an early sign of myocardial involvement in doxorubicin-induced cardiotoxicity, sarcoidosis, diabetes and hypertension,12,13,32 and a sensitive detector of myocardial viability and contractility reserve.16,33 In experimental studies, CVIBS has been shown to respond faster to ischemia and reperfusion than any conventional contractility measurement.11 Our results indicate that the negative effects of RT on cardiac function in CVIBS were dose-dependent. Also, elevated hsTnT and proBNP levels have been associated with poor prognosis in various cardiac diseases.34 Hence, the changes in hsTnT and proBNP in our patient population support the hypothesis that these early echocardiographic changes may later manifest as symptomatic RIHD. These findings pursue the continuing evolution toward safer treatment planning with a special emphasis on healthy tissue-sparing protocols and to targeted treatment for other cardiovascular risk factors such as hypertension, diabetes, dyslipidemia, obesity, smoking, and other lifestyle habits. This may reduce also the risk of secondary malignancies. Also, the potentially harmful effects of AIs should also be taken into account when planning future RT studies for patients with breast cancer.

\section{4.5 Limitations of our study}

The patient population was relatively small and the distribution of the patients with the right- and left-sided breast cancer between the groups was unequal. The main focus on the study was, however, on the mean heart radiation dose, which can be considered to be independent of the RT laterality. Also, all the observed echocardiographic changes were subclinical. Therefore, considering the slow development of RIHD long-term follow-up is needed to verify the prognostic value of these early changes. The long-term follow-up of this patient population is planned. Finally, in our study, the reproducibility was better for intra-observer and test-retest variability than for inter-observer variability.

\section{5 CONCLUSION}

Adjuvant RT in early breast cancer caused dose-dependent changes in cardiac function. These subclinical changes were evident in the UTC analysis but not in the conventional LV systolic echocardiographic examination. Detection of early RT-induced cardiac changes may have an important role in the identification of patients at risk for RIHD.

\section*{ACKNOWLEDGMENTS}

The authors thank the research nurses, Virpi Räsänen, Hanna Näppilä, and Emmi Vettenranta, for their expert assistance during the study. This study was supported by the Pirkanmaa Hospital District, Seppo Nieminen Fund (grant 150613), Paavo and Ela Salonen Legacy, Ida Montin Fund, the Finnish Foundation for Cardiovascular Research and the Finnish Cultural Foundation, Pirkanmaa Regional Fund, Finnish Society for Oncology, Finnish-Norwegian Medical Foundation, Pirkanmaa Cancer Society, and Finnish Medical Foundation.

\section*{CONFLICT OF INTEREST}

Suvi Tuohinen, Tanja Skyttä, Heini Huhtala, Vesa Virtanen, Marko Virtanen, Pirkko-Liisa Kellokumpu-Lehtinen, and Pekka Raatikainen declare that they have no conflict of interest.

\section*{REFERENCES}

Radiotherapy-induced global and regional differences in early-stage left-sided versus right-sided breast cancer patients: speckle tracking echocardiography study

Suvi Sirkku Tuohinen1 · Tanja Skyttä2 · Tuija Poutanen3 · Heini Huhtala4 · Vesa Virtanen1 · Pirko-Liisa Kellokumpu-Lehtinen2 · Pekka Raatikainen5

Received: 3 October 2016 / Accepted: 12 November 2016 © Springer Science+Business Media Dordrecht 2016

Abstract Radiotherapy (RT) to the thoracic region increases late cardiovascular morbidity and mortality. The impact of breast cancer laterality on cardiac function is largely unknown. The aim of this prospective study was to compare RT-induced changes in left-sided and right-sided breast cancer patients using speckle tracking echocardiography (STE). Sixty eligible patients with left-sided breast cancer and 20 with right-sided breast cancer without chemotherapy were evaluated prospectively before and early after RT. A comprehensive echocardiographic examination included three dimensional measurements and STE of the left ventricle (LV). The global longitudinal strain (GLS) was reduced from -18.3 ± 3.1 to $-17.2 \pm 3.3\%$ ($p=0.003$) after RT in patients with left-sided breast cancer. Similarly, regional analysis showed a reduction in the apical strain from -18.7 ± 5.3 to $-16.7 \pm 4.9\%$ ($p=0.002$) and an increase in basal values from -21.6 ± 5.0 to $-23.3 \pm 4.9\%$ ($p=0.024$). Patients with right-sided breast cancer showed deterioration in basal anterior strain segments from -26.3 ± 7.6 to $-18.8 \pm 8.9\%$ ($p<0.001$) and in pulsed tissue Doppler by 0.825 [0.365, 1.710] cm/s ($p<0.001$). In multivariable analysis, the use of aromatase inhibitor ($\beta=-2.002$, $p=0.001$) and decreased LV diastolic volume ($\beta=-0.070$, $p=0.025$) were independently associated with the decrease in GLS. RT caused no changes in conventional LV systolic measurements. RT induced regional changes corresponded to the RT fields. Patients with left-sided breast cancer experienced apical impact and global decline, whereas patients with right-sided breast cancer showed basal changes. The regional differences in cardiac impact warrant different methods in screening and in the follow-up of patients with left-sided versus right-sided breast cancer.

Keywords Speckle tracking · Breast cancer · Radiotherapy · Laterality

Introduction

Breast cancer is the most common cancer in women worldwide [1]. Radiotherapy (RT) reduces local breast cancer relapses and disease-related mortality but doubles late cardiovascular morbidity and mortality [2–4]. Breast cancer laterality has major importance. Patients with left-sided breast cancer have a 1.3 to 1.6-fold relative risk of cardiovascular complications 10 years after RT, compared with right-sided breast cancer patients [1, 4–6]. However, the RT-induced cardiac impact is more associated with the cardiac radiation exposure rather than breast cancer laterality [5], and the increase in coronary events has been estimated to vary from 4 to 7.4% per Gray (Gy) of the mean...
heart dose [1, 5]. The average cardiac exposure of patients with right-sided breast cancer has been estimated at 3.3 Gy (0.4–6 Gy) [7, 8], resulting in at least a 1.6–3.0% increase in risk for coronary events. The majority of the studies of RT-induced cardiac changes in breast cancer patients have focused on patients with left-sided breast cancer, and knowledge of the changes among patients with right-sided breast cancer is limited.

Myocardial deformation imaging in echocardiography has major advantages over conventional measurements. It is more sensitive for detecting subtle changes in earlier phases than conventional functional measurements over wide variety of pathologies [9, 10]. Colour strain measurements have detected changes in myocardial deformation in regions receiving radiation doses >3 Gy [11]. In speckle tracking echocardiography (STE) analysis, global longitudinal strain (GLS) decreased after RT in left-sided breast cancer patients [9]. However, the early manifestations after RT in patients with right-sided breast cancer have not been well characterized. The aim of this study was to illuminate the differences induced by RT exposure laterality in the early phase after adjuvant RT in breast cancer patients using the STE method.

Materials and methods

Patient selection

A total of 80 eligible female patients with early-stage breast cancer were included in this single-centre, prospective clinical study between July 2011 and November 2013. Sixty of them had left-sided breast cancer, and 20 had right-sided breast cancer. Following breast cancer surgery, all patients received adjuvant conformal three dimensional (3D) RT. None of these early stage breast cancer patients received chemotherapy. Other exclusion criteria were age under 18 or over 80 years, other malignancies, pregnancy or breast feeding, acute myocardial infarction within 6 months, symptomatic heart failure (NYHA 3–4), dialysis, permanent anticoagulation and severe psychiatric disorders. Patients with atrial fibrillation, left bundle branch block, permanent pacemaker and severe lung disease were also excluded to improve the quality of echocardiographic imaging. The protocol was approved by the local institutional board of ethics (R10160), and all of the participants provided written informed consent before enrolment.

Radiotherapy

The RT protocol used in this study has previously been described in detail [12]. In brief, 3D computed tomography treatment planning and contouring were performed in all of the patients (Fig. 1). The treatment schedule was either 50 Gy in 2 Gy fractions (standard) or 42.56 Gy in 2.66 Gy fractions (hypofractionated). An additional boost of 16 Gy in 2 Gy fractions to the tumour bed was used, if clinically indicated. Doses were calculated using the anisotropic analytical algorithm, and dose-volume histograms for different structures were generated (Table 1).

Cardiac examinations

Patients were examined 6±8 days prior to RT and 1±1 days after RT treatment with median time interval between the studies 38 days (19–93 days). Blood samples for high sensitivity troponin T (hsTnT) and pro-B-type natriuretic peptide (proBNP) were collected at the baseline, in patients with right-sided breast cancer, here with the blue colouring demonstrating fields receiving 0.5 Gy radiation doses. Manually depicted heart contouring is also shown for the whole heart, for the left ventricle and for the right ventricle.
once during treatment and at the end of RT treatment. Comprehensive echocardiography was performed, and a 12-lead electrocardiogram (ECG) was obtained at each visit.

All echocardiographic examinations were performed by the same cardiologist (SST) using a commercially available cardiac ultrasound machine (Philips iE33 ultrasound system, Bothell, WA, USA) and a 1–5 MHz matrix-array X5-1 transducer. The imaging was acquired at rest, and Doppler recordings were acquired at end-expiration. The patients were in the left lateral decubitus position. A simultaneous superimposed ECG was used throughout the studies. The images were stored on an external hard drive for off-line analysis (Philips Qlab, Bothell, WA, USA). For STE analysis, three apical clips (four chamber, two chamber and three chamber) and three parasternal clips (short axis clips at the level of the mitral valve, the papillary muscle level and the apex) of the left ventricle (LV) were acquired over three cycles. Care was taken to optimize the visualization of the LV muscle throughout the cycles, aiming at a frame-rate of 60–90 Hz. Adequate tracking was controlled by visual inspection, and reanalysis was performed if necessary. Segments with repeated inadequate tracking were excluded from the final results. Regional results were calculated as average values from the segments located correspondingly.

Statistical analysis

The data are reported as means and standard deviations for normally distributed variables and as medians with ranges for other continuous variables. Differences between the groups in the baseline characteristics were tested with Student’s *t*-test for continuous variables and with Fisher’s exact test for categorical variables. The change from baseline to after RT was analysed with the paired samples *t*-test for normally distributed variables and with Wilcoxon’s signed rank test for variables with skewed distribution. Categorical variables were analysed with the Chi square test/Fisher’s exact test. Associations of the variables with the changes in STE values were calculated with Pearson’s correlation or with Spearman’s correlation for non-normally distributed variables. The differences in GLS changes between patients who smoked or did not smoke and other baseline diagnoses or medications were tested with Student’s *t*-test. Binary logistic and linear regression analysis were used to test univariate associations for categorical and continuous variables. Stepwise linear regression analysis was used to test multivariable associations with GLS changes and tested parameters are shown in the corresponding tables. The reproducibility of the STE data was tested in 20 healthy volunteers from blinded data with intraclass correlation. All of the tests were two-sided, and *p* values <0.05 were considered statistically significant. Statistical analyses were performed using IBM SPSS Statistics software, version 23 for Windows (Armonk, NY, USA).

Results

General characteristics

The mean age of the study group was 63 ± 6 years. Thirty-three patients (41%) had no other concurrent disease. The most common underlying diseases included hypertension (44%), hypercholesterolaemia (23%) and hypothyroidism (13%). Twenty patients (25%) were current or ex-smokers. Fifty patients (63%) had a body mass index (BMI) >25 cm/m2.

Speckle tracking analysis

Patients with left-sided breast cancer

Patients with left-sided breast cancer displayed changes in global strain of 1.1 ± 2.7% (*p* = 0.003), and a more than 10% decrease from the baseline GLS value was experienced by 17 patients (28%). Regional analysis showed reductions in apical values of 2.0 ± 4.5% (*p* = 0.002) and apex values of 1.9 ± 4.4% (*p* = 0.003) and an increase in basal strain values of 1.7 ± 5.4% (*p* = 0.024); for details, see Table 3. Circumferential analysis and systolic strain rate analysis (see Supplementary Tables 1, 2) were less sensitive for detecting RT-induced changes in patients with left-sided breast cancer. In multivariable analysis, the changes in the apical segments were independently associated with prolonged apical rotation time (β = 0.012, *p* = 0.011) and with increasing LV mass (β = −0.076, *p* = 0.024). In addition, increased myocardia reflectivity (sccIBS) had an independent association with decreasing basal strain values (β = 0.293, *p* = 0.045).

Table 1 Radiation doses to the different cardiac structures in Grays

<table>
<thead>
<tr>
<th></th>
<th>Left-sided breast cancer</th>
<th>Right-sided breast cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 60</td>
<td>n = 20</td>
</tr>
<tr>
<td></td>
<td>Median [Min, Max]</td>
<td>Median [Min, Max]</td>
</tr>
<tr>
<td>Mean heart</td>
<td>3.1 [0.7, 6.8]</td>
<td>0.6 [0.3, 4.8]</td>
</tr>
<tr>
<td>Peak heart</td>
<td>47.0 [5.8, 64.2]</td>
<td>4.5 [2.5, 19.1]</td>
</tr>
<tr>
<td>Mean LV</td>
<td>4.4 [0.8, 12.3]</td>
<td>0.1 [0.0, 3.3]</td>
</tr>
<tr>
<td>Peak LV</td>
<td>45.8 [4.5, 63.8]</td>
<td>0.4 [0.2, 5.2]</td>
</tr>
</tbody>
</table>

LV left ventricle
Patients with right-sided breast cancer

No significant change in GLS was observed in patients with right-sided breast cancer. However, segmental analysis revealed a decrease in the basal anterior segment in the strain analysis from -26.2 ± 7.8 to $-17.9 \pm 8.2\%$ ($p < 0.001$) and in the pulsed tissue Doppler analysis from $7.1 [6.1, 7.7]$ to $5.6 [5.3, 6.5] \text{ cm/s}$ ($p < 0.001$) (Fig. 2). In multivariable analysis, delayed basal rotation time ($\beta = -0.035, p = 0.020$) was independently associated with changes in strain. Hypertension ($\beta = -1.272, p = 0.009$) and change in LV end diastolic diameter ($\beta = 0.042, p = 0.024$) had independent associations with the decrease in the anterior pulsed tissue Doppler value.

Multivariate analysis for overall GLS changes

The results of the correlation and multivariable analyses for GLS changes are displayed in Table 4. In multivariable analysis, the use of aromatase inhibitors (AIs) ($\beta = -2.002, p = 0.001$) and a decrease in LV diastolic volume had independent associations with a reduction in GLS ($\beta = -0.070, p = 0.025$). They explained 23% of the total GLS change after RT.
Table 3 Longitudinal systolic speckle tracking and pulsed tissue Doppler measurements

<table>
<thead>
<tr>
<th></th>
<th>Left-sided breast cancer</th>
<th></th>
<th>Right-sided breast cancer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 60</td>
<td>After RT</td>
<td>p</td>
<td>After RT</td>
</tr>
<tr>
<td></td>
<td>Baseline</td>
<td></td>
<td></td>
<td>Baseline</td>
</tr>
<tr>
<td>Longitudinal strain (%)</td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>GLS</td>
<td>−18.3 ±3.1</td>
<td>0.003</td>
<td>−16.9 ±3.8</td>
<td>0.577</td>
</tr>
<tr>
<td>Basal</td>
<td>−21.6 ±5.0</td>
<td>0.024</td>
<td>−21.1 ±4.3</td>
<td>0.576</td>
</tr>
<tr>
<td>Mid</td>
<td>−19.4 ±4.6</td>
<td>0.039</td>
<td>−17.6 ±5.3</td>
<td>0.489</td>
</tr>
<tr>
<td>Apical</td>
<td>−18.7 ±5.3</td>
<td>0.002</td>
<td>−16.5 ±5.6</td>
<td>0.159</td>
</tr>
<tr>
<td>Apex</td>
<td>−18.3 ±5.1</td>
<td>0.003</td>
<td>−16.0 ±5.7</td>
<td>0.334</td>
</tr>
<tr>
<td>Anterior</td>
<td>−18.2 ±4.3</td>
<td>0.277</td>
<td>−18.5 ±4.4</td>
<td>0.089</td>
</tr>
<tr>
<td>Anteroseptal</td>
<td>−19.2 ±3.9</td>
<td>0.281</td>
<td>−17.7 ±4.5</td>
<td>0.374</td>
</tr>
<tr>
<td>Inferoseptal</td>
<td>−21.2 ±3.7</td>
<td>0.110</td>
<td>−19.1 ±3.8</td>
<td>0.229</td>
</tr>
<tr>
<td>Inferior</td>
<td>−20.3 ±4.0</td>
<td>0.264</td>
<td>−19.8 ±4.7</td>
<td>0.854</td>
</tr>
<tr>
<td>Inferolateral</td>
<td>−20.2 ±4.4</td>
<td>0.122</td>
<td>−18.6 ±4.3</td>
<td>0.704</td>
</tr>
<tr>
<td>Anterolateral</td>
<td>−20.5 ±3.6</td>
<td>0.874</td>
<td>−19.3 ±5.0</td>
<td>0.528</td>
</tr>
<tr>
<td>Longitudinal strain rate (1/s)</td>
<td>Median</td>
<td>[Q1, Q3]</td>
<td>Median</td>
<td>[Q1, Q3]</td>
</tr>
<tr>
<td>Global</td>
<td>−1.251 [−1.453, −1.107]</td>
<td>0.393</td>
<td>−1.324 [−1.531, −1.183]</td>
<td>0.823</td>
</tr>
<tr>
<td>Basal</td>
<td>−1.455 [−1.752, −1.171]</td>
<td>0.006</td>
<td>−1.559 [−1.828, −1.380]</td>
<td>0.873</td>
</tr>
<tr>
<td>Mid</td>
<td>−1.256 [−1.642, −1.095]</td>
<td>0.237</td>
<td>−1.471 [−1.698, −1.160]</td>
<td>0.794</td>
</tr>
<tr>
<td>Apical</td>
<td>−1.093 [−1.295, −0.950]</td>
<td>0.201</td>
<td>−1.110 [−1.293, −0.993]</td>
<td>0.940</td>
</tr>
<tr>
<td>Apex</td>
<td>−1.050 [−1.218, −0.895]</td>
<td>0.174</td>
<td>−1.104 [−1.226, −0.940]</td>
<td>0.970</td>
</tr>
<tr>
<td>Anterior</td>
<td>−1.150 [−1.518, −0.986]</td>
<td>0.201</td>
<td>−1.273 [−1.543, −1.137]</td>
<td>0.227</td>
</tr>
<tr>
<td>Anteroseptal</td>
<td>−1.252 [−1.549, −1.071]</td>
<td>0.521</td>
<td>−1.317 [−1.673, −1.009]</td>
<td>0.211</td>
</tr>
<tr>
<td>Inferoseptal</td>
<td>−1.189 [−1.314, −1.076]</td>
<td>0.891</td>
<td>−1.324 [−1.601, −1.178]</td>
<td>0.794</td>
</tr>
<tr>
<td>Inferior</td>
<td>−1.313 [−1.543, −1.135]</td>
<td>0.717</td>
<td>−1.445 [−1.673, −1.258]</td>
<td>0.349</td>
</tr>
<tr>
<td>Inferolateral</td>
<td>−1.310 [−1.848, −1.063]</td>
<td>0.615</td>
<td>−1.498 [−1.713, −1.181]</td>
<td>0.981</td>
</tr>
<tr>
<td>Anterolateral</td>
<td>−1.313 [−1.801, −1.074]</td>
<td>0.402</td>
<td>−1.487 [−1.633, −1.154]</td>
<td>0.841</td>
</tr>
<tr>
<td>Pulsed tissue Doppler measurements (cm/s)</td>
<td>Median</td>
<td>[Q1, Q3]</td>
<td>Median</td>
<td>[Q1, Q3]</td>
</tr>
<tr>
<td>Septal</td>
<td>6.6 [6.2–7.4]</td>
<td>0.616</td>
<td>6.6 [6.0–7.7]</td>
<td>0.498</td>
</tr>
<tr>
<td>Lateral</td>
<td>7.2 [6.1–8.4]</td>
<td>0.224</td>
<td>7.4 [6.1–8.4]</td>
<td>0.227</td>
</tr>
<tr>
<td>Posterior</td>
<td>7.8 [7.0–8.6]</td>
<td>0.099</td>
<td>7.8 [7.3–8.7]</td>
<td>0.355</td>
</tr>
<tr>
<td>Anterior</td>
<td>6.2 [5.5–7.5]</td>
<td>0.026</td>
<td>7.1 [6.1–7.7]</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Statistically significant p-values (p < 0.05) are in bold italics and values with tendency to statistically significance with italics (p-value between 0.05–0.10).

GLS global longitudinal strain
In the whole group, the LV myocardial mass derived from 3D imaging increased from 105 ± 21 to 109 ± 21 g ($p = 0.010$). On two-dimensional imaging, increases were found in relative wall thickness, and in septal and posterior wall thickness: $p = 0.002$, 0.001 and $p = 0.001$, respectively. The changes in diastolic function were found to result in

Table 4 Factors associated with GLS changes after radiotherapy

<table>
<thead>
<tr>
<th></th>
<th>Correlations</th>
<th>Multivariable analysisa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>Age (years)</td>
<td>-0.237</td>
<td>0.043</td>
</tr>
<tr>
<td>Mitral E-wave change (cm/s)</td>
<td>-0.300</td>
<td>0.010^a</td>
</tr>
<tr>
<td>LV mass change (3D) (g)</td>
<td>-0.309</td>
<td>0.012</td>
</tr>
<tr>
<td>LVDV change (3D) (ml)</td>
<td>-0.292</td>
<td>0.018</td>
</tr>
<tr>
<td>Ef change (3D) (%)</td>
<td>-0.250</td>
<td>0.047</td>
</tr>
<tr>
<td>Mean heart (Gy)</td>
<td>-0.077</td>
<td>0.516</td>
</tr>
</tbody>
</table>

GLS changeb

<table>
<thead>
<tr>
<th></th>
<th>With</th>
<th>Without</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Aromatase inhibitor</td>
<td>-2.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Smoking</td>
<td>-1.5</td>
<td>2.6</td>
<td>-0.5</td>
</tr>
<tr>
<td>Valvular abnormality</td>
<td>-3.2</td>
<td>3.7</td>
<td>-0.5</td>
</tr>
<tr>
<td>Patient group (left)</td>
<td>-1.1</td>
<td>2.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Hypertension</td>
<td>-1.0</td>
<td>2.7</td>
<td>-0.5</td>
</tr>
<tr>
<td>Diabetes</td>
<td>-1.7</td>
<td>2.6</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

Statistically significant p-values ($p < 0.05$) are in bold italics.

GLS global longitudinal strain, LV left ventricle, $3D$ three-dimensional, $LVDV$ LV end-diastolic volume, Ef ejection fraction, Mean heart mean radiation dose to the whole heart, Patient group (left) patients with left-sided breast cancer

aSpearman’s correlation; Pearson’s correlation for others

bThe analysis is performed with linear forward stepwise regression analysis

The given number under definition ‘with’ presents GLS decline with patients using Aromatase inhibitor, patient smoking, with significant valvular lesions, patients with left-sided breast cancer and patients with hypertension and diabetes, respectively. In the column ‘without’ the GLS change after RT in patients without these conditions is shown

Conventional echocardiographic measurements

In the whole group, the LV myocardial mass derived from 3D imaging increased from 105 ± 21 to 109 ± 21 g ($p = 0.010$). On two-dimensional imaging, increases were found in relative wall thickness, and in septal and posterior wall thickness: $p = 0.002$, 0.001 and $p = 0.001$, respectively. The changes in diastolic function were found to result in

Fig. 2 Segmental changes in longitudinal strain after radiotherapy. The *green* colour shows segments with increasing function and red those with declining function. The *darker green* and *red* colours show segments with statistically significant changes ($p < 0.05$). Patients with left-sided breast cancer are shown on the left side and patients with right-sided breast cancer on the right side.
decreases in mitral inflow E-wave and prolongation of the E-wave’s declaration time: \(p = 0.005 \) and \(0.018 \), respectively. The changes were more prevalent in left-sided breast cancer patients; Table 5.

Electrocardiogram and biochemical markers

RT induced minor ECG changes in 44 patients (55%). The most typical changes were T-wave inversions or reductions in leads V1-4, aVL and I. ECG changes were more common in patients with left-sided breast cancer than in patients with right-sided breast cancer (39 vs. 5 patients) (\(p = 0.003 \)).

The baseline and the highest (\(Q_1, Q_3 \)) hsTnt values were 4 (4, 15) and 5 (4, 15) ng/l (\(p = 0.006 \)) in patients with left-sided breast cancer and 4 (4, 33) and 5 (4, 20) ng/l (\(p = 0.287 \)) in patients with right-sided breast cancer, respectively. More than 30% increase in hsTnt was found in 14 patients and one patient among left-sided and right-sided patients, respectively (\(p < 0.001 \)).

In patients with left-sided breast cancer, the baseline proBNP value was 59 (14, 824) ng/l with an increase to 88 (15, 1101) ng/l (\(p < 0.001 \)). The respective values were 92 (12, 160) and 86 (24, 261) ng/l (\(p = 0.809 \)), in patients with right-sided breast cancer. A more than 30% increase in proBNP value was observed in 32 left-sided and four right-sided patients (\(p = 0.014 \)).

Reproducibility

The longitudinal measurements showed generally higher reproducibility than the circumferential measurements, and
the strain values were higher than the strain rate values. In the regional analysis, the apical regions seemed to be more reproducible than the basal regions in longitudinal measurements, whereas in the circumferential analysis, the anterior regions were more reliable than the posterior regions. For detailed analyses, see Supplementary Table 3.

Discussion

In this prospective study, STE analysis could detect differences in the global and regional changes in myocardial function in the early stage after adjuvant RT in patients with left-sided versus right-sided breast cancer. RT-induced changes in patients with right-sided breast cancer have not been previously reported. Due to different locations of the changes in patients with left-sided and right-sided breast cancer, the late stage complications might differ according to the breast cancer laterality.

RT-induced changes in tissues

Radiation produces sequential, time-dependent changes in tissue. The first phase consists of inflammation with edema, extravasation and activation of the coagulation cascade [13, 14]. It is generally believed that a complex cascade is launched during the early phase and results in progressive fibrotic changes over years to decades after RT treatment [14]. The inflammatory phase subsides to a latent phase within 2 days after RT exposure [13]. The latent phase is characterized by capillary damage caused by endothelial injury and thrombotic lesions [13, 14]. The first signs of the fibrotic phase have been found 40–70 days after the completion of RT treatment [13]. In the heart, the clinical late sequelae appear 5–15 years after RT treatment and consist of wide variety of changes [3, 15]. The most lethal changes are coronary lesions, typically of a fibrotic nature with ostial and anterior locations [3, 15]. Myocardial changes can produce thickening of the LV walls resulting in filling problems and restrictive cardiomyopathy [3]. Valvular stenosis and regurgitation, arrhythmia and conduction disturbances and pericardial constriction are also well-known complications after thoracic RT treatment [3, 15]. Our patients were re-examined within 3 days after the RT treatment, well within the inflammatory period, though the initial phase of the fibrosis could theoretically have started.

STE changes in patients with left-sided breast cancer

RT induced an apical decline in the LV systolic function in patients with left-sided breast cancer in the present study, which was in concordance with previous studies by Erven and Heggemann [11, 16]. These changes were detectable both in the longitudinal strain and strain rate analyses, as well as at global, regional and segmental levels. The basal regions had a compensatory increase in function. The basal compensation was, however, not sufficient to compensate for the global functional loss, and the patients experienced a decrease in the GLS. Similar findings were reported by Lo [9]. A more than 10% decrease in the GLS is generally considered clinically significant [17], and this change was observed in 28% of our patients with left-sided breast cancer. Other conventional systolic functional LV measurements were not sufficiently sensitive to detect these RT-induced changes.

STE changes in patients with right-sided breast cancer

Patients with right-sided breast cancer received significantly less cardiac radiation. Another main difference was the localization of the RT fields, as shown in Fig. 1. The optimal tangential right-sided RT fields usually do not reach the basis of the LV. However, due to individual anatomy (e.g., large breasts), additional fields were used in some patients to ensure optimal target volume coverage, and a marked variation in LV doses was observed (LV mean 0.0–3.3 Gy). In the LV longitudinal segmental analysis, both strain and pulsed tissue Doppler values decreased in the basal anterior LV myocardium. Because of the small affected area, the global function remained unaffected both in the STE analysis and in the conventional echocardiography measurements. However, in the diastolic parameters, an increase in the declaration time and a tendency towards a decrease in the mitral E-wave were found.

Other RT-induced cardiac changes

Other measurements showed increased thickness in the myocardium on both 2D and 3D echocardiography with a simultaneous decrease in the LV diastolic volume, along with minor changes in diastology, and in TAPSE (tricuspid annular plane systolic excursion). The early inflammatory effect of the RT treatment with extravasation and tissue swelling would be a logic explanation to increased myocardial mass along with the changes in diastology, though the exact mechanism remains speculative in the absence of tissue samples. Furthermore, ECG showed changes in the anterior leads mainly in patients with left-sided breast cancer, corresponding to the anterior location of the RT fields. Moreover, there were slight but statistically significant increases in serum hsTnt and proBNP values in patients with left-sided breast cancer. All of these subtle changes might represent the same subclinical cardiac changes induced by breast cancer adjuvant RT, as observed in the STE analysis.
Clinical implications of the findings in this study

Subclinical cardiac changes precede actual cardiac sequelae, and their presence might indicate greater risk for evolution to radiotherapy-induced heart disease (RIHD). Hence, interest in RT-induced early cardiac changes has emerged, and it is debated whether patients receiving RT in the thoracic regions should be followed up regularly [3]. The early manifestations have not been well characterized, and their detection is considered challenging, even more so for right-sided breast cancer patients. The cardiac radiation dose after left-sided breast cancer RT is higher than that after right-sided breast cancer [7], as also shown in our study. In studies comparing the impact of breast cancer laterality, cardiac mortality and morbidity were higher after left-sided RT [1, 5, 6]. However, the impact of right-sided RT is not negligible. It has been shown that the mean heart radiation dose itself induces an increased cardiac risk, and with a cardiac exposure of 0.3–4.8 Gy, our patients with right-sided breast cancer could face a 2.2–35.5% increased risk of ischaemic heart disease within 5 years [5]. Considering the difference in the location of the RT fields, the cardiac impact after RT and its early lesions might be different in patients with left-sided and right-sided breast cancer. Our study was the first to indicate this decline in systolic function in regions corresponding to the RT fields in patients with right-sided breast cancer, with a clear difference from the changes after left-sided RT in transthoracic echocardiography examination. Considering the screening for early changes, this is a worthwhile fact to notice. Although the GLS has shown promise to be an early and sensitive tool to detect subclinical changes over a wide range of pathologies [10, 17], it might fail to reveal RT-induced cardiac injury in patients with right-sided breast cancer.

The effects of the concurrent endocrine treatment

The impact of the concurrent use of AIs on the GLS decrease after RT was also interesting. Oestrogen has positive effects on cardiac function and recovery [18]. Aromatase is an enzyme regulating the final pathway of oestrogen metabolism. When it is blocked, the tissue level of oestrogen declines. In breast cancer patients, inhibition of this enzyme is used to block oestrogen-induced growth stimulation of cancer tissue. The simultaneous use of AIs during RT has been shown both to sensitize the RT effect and to potentiate RT-induced cardiac functional decline [19, 20]. Similar effects might explain the strong association between the simultaneous use of AIs and a decrease in GLS.

Limitations of our study

The patient population was uniform in many ways, which could limit the application of the results in other patient groups. The echocardiographic studies were performed by a single experienced cardiologist who always used the same equipment, resulting in unique standardized conditions, which might not correspond to general clinical practice. Additionally, the reproducibility was not equally distributed in all of the measured values, which might have influenced the reliability of some of the measurements. Because this study was an observational, non-randomized study with main focus on the group of patients with left-sided breast cancer, the groups with left-sided and right-sided breast cancer were of unequal sizes. Furthermore, the size of the patient population was relatively small, which might limit the clinical implications of the results. Finally, these results showed very short term outcome. Follow-up of this prospectively collected patient population is currently under way to explore the further development of these early cardiac changes.

Conclusion

Our study confirmed the previous findings of global LV functional changes, along with apical impact, after RT in patients with left-sided breast cancer. The basal anterior impact after right-sided RT was a novel finding and indicated that a different approach is needed for the detection of right-sided cancers in screening and follow-up.

Acknowledgements The authors thank research nurses Virpi Räsänen, Hanna Nääpilä and Emmi Vettenranta for their expert assistance during the study and Helene Schmidt for the drawings.

Funding This study was supported by the Pirkanmaa Hospital District, Seppo Nieminen Fund (Grant No. 150613), Paavo and Eila Salonen Legacy, the Ida Montin Fund, the Finnish Foundation for Cardiovascular Research, the Competitive State Research Financing of the Expert Responsibility Area of Tampere University Hospital (Grant No. 95021) and the Finnish Cultural Foundation, the Pirkanmaa Regional Fund and the Finnish Medical Foundation.

Compliance with ethical standards

Conflict of interest None of the authors have any conflict of interest to declare, financial or otherwise.

Ethical approval This study has been approved by the local ethics committee and it has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.
Informed consent All persons included in this study have given informed consent prior to their inclusion in the study.

Research involving animal rights This study does not contain any studies with animals performed by any of the authors.

References